Files
FastDeploy/examples/vision/matting/rvm/python
huangjianhui 19008a2397 [Other]Update im.copy() to im in examples (#854)
* Update keypointdetection result docs

* Update im.copy() to im in examples
2022-12-12 09:47:54 +08:00
..

RobustVideoMatting Python部署示例

在部署前,需确认以下两个步骤

本目录下提供infer.py快速完成RobustVideoMatting在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成

#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/matting/rvm/python

# 下载RobustVideoMatting模型文件和测试图片以及视频
## 原版ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_fp32.onnx
## 为加载TRT特殊处理ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_trt.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4

# CPU推理
## 图片
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu
## 视频
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device cpu
# GPU推理
## 图片
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu
## 视频
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu
# TRT推理
## 图片
python infer.py --model rvm_mobilenetv3_trt.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
## 视频
python infer.py --model rvm_mobilenetv3_trt.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu --use_trt True

运行完成可视化结果如下图所示

RobustVideoMatting Python接口

fd.vision.matting.RobustVideoMatting(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)

RobustVideoMatting模型加载和初始化其中model_file为导出的ONNX模型格式

参数

  • model_file(str): 模型文件路径
  • params_file(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
  • runtime_option(RuntimeOption): 后端推理配置默认为None即采用默认配置
  • model_format(ModelFormat): 模型格式默认为ONNX

predict函数

RobustVideoMatting.predict(input_image)

模型预测结口,输入图像直接输出抠图结果。

参数

  • input_image(np.ndarray): 输入数据注意需为HWCBGR格式

返回

返回fastdeploy.vision.MattingResult结构体,结构体说明参考文档视觉模型预测结果

其它文档