Files
FastDeploy/tests/model_loader/test_model_cache.py
2025-09-15 18:33:30 +08:00

129 lines
3.5 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pytest
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import (
check_tokens_id_and_text_close,
form_model_get_output_topp0,
get_paddle_model_path,
run_with_timeout,
)
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
prompts = ["解释下“温故而知新", "Hello, how are you?"]
model_param_map = {
"ernie-4_5-21b-a3b-bf16-paddle": {
"tensor_parallel_size": 2,
"quantizations": [
{
"quant_type": "wint4",
"env": {"FD_ENABLE_MODEL_LOAD_CACHE": "1"},
}
],
}
}
params = []
for model, cfg in model_param_map.items():
for q in cfg["quantizations"]:
if isinstance(q, dict):
quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {})
else:
quant, backend, env = q, "default", {}
params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 1),
cfg.get("max_model_len", 1024),
quant,
cfg.get("max_tokens", 32),
env,
marks=[pytest.mark.core_model],
id=f"{model}.{quant}.{backend}",
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env",
params,
)
def test_model_cache(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
env,
monkeypatch,
) -> None:
model_path = get_paddle_model_path(model_name_or_path)
fd_outputs_v1 = run_with_timeout(
target=form_model_get_output_topp0,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
FD_CACHE_QUEUE_PORT,
),
)
if env:
for k, v in env.items():
monkeypatch.setenv(k, v)
fd_outputs_v1_with_cache = run_with_timeout(
target=form_model_get_output_topp0,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
FD_CACHE_QUEUE_PORT,
),
)
check_tokens_id_and_text_close(
outputs_0_lst=fd_outputs_v1,
outputs_1_lst=fd_outputs_v1_with_cache,
name_0="default_v1 loader",
name_1="default_v1 loader using cache",
)