# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import pytest current_dir = os.path.dirname(os.path.abspath(__file__)) project_root = os.path.abspath(os.path.join(current_dir, "..")) if project_root not in sys.path: sys.path.insert(0, project_root) from tests.model_loader.utils import ( check_tokens_id_and_text_close, form_model_get_output_topp0, get_paddle_model_path, run_with_timeout, ) FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313)) FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333)) prompts = ["解释下“温故而知新", "Hello, how are you?"] model_param_map = { "ernie-4_5-21b-a3b-bf16-paddle": { "tensor_parallel_size": 2, "quantizations": [ { "quant_type": "wint4", "env": {"FD_ENABLE_MODEL_LOAD_CACHE": "1"}, } ], } } params = [] for model, cfg in model_param_map.items(): for q in cfg["quantizations"]: if isinstance(q, dict): quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {}) else: quant, backend, env = q, "default", {} params.append( pytest.param( model, cfg.get("tensor_parallel_size", 1), cfg.get("max_model_len", 1024), quant, cfg.get("max_tokens", 32), env, marks=[pytest.mark.core_model], id=f"{model}.{quant}.{backend}", ) ) @pytest.mark.parametrize( "model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env", params, ) def test_model_cache( fd_runner, model_name_or_path: str, tensor_parallel_size: int, max_model_len: int, max_tokens: int, quantization: str, env, monkeypatch, ) -> None: model_path = get_paddle_model_path(model_name_or_path) fd_outputs_v1 = run_with_timeout( target=form_model_get_output_topp0, args=( fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default_v1", FD_ENGINE_QUEUE_PORT, prompts, FD_CACHE_QUEUE_PORT, ), ) if env: for k, v in env.items(): monkeypatch.setenv(k, v) fd_outputs_v1_with_cache = run_with_timeout( target=form_model_get_output_topp0, args=( fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default_v1", FD_ENGINE_QUEUE_PORT, prompts, FD_CACHE_QUEUE_PORT, ), ) check_tokens_id_and_text_close( outputs_0_lst=fd_outputs_v1, outputs_1_lst=fd_outputs_v1_with_cache, name_0="default_v1 loader", name_1="default_v1 loader using cache", )