mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # YOLOv5Seg C++部署示例
 | ||
| 
 | ||
| 本目录下提供`infer.cc`快速完成YOLOv5Seg在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)  
 | ||
| - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
 | ||
| 
 | ||
| 以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>=1.0.3)
 | ||
| 
 | ||
| ```bash
 | ||
| mkdir build
 | ||
| cd build
 | ||
| # 下载 FastDeploy 预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
 | ||
| wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
 | ||
| tar xvf fastdeploy-linux-x64-x.x.x.tgz
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
 | ||
| make -j
 | ||
| 
 | ||
| # 1. 下载官方转换好的 YOLOv5Seg ONNX 模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx
 | ||
| wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
 | ||
| 
 | ||
| # CPU推理
 | ||
| ./infer_demo yolov5s-seg.onnx 000000014439.jpg 0
 | ||
| # GPU推理
 | ||
| ./infer_demo yolov5s-seg.onnx 000000014439.jpg 1
 | ||
| # GPU上TensorRT推理
 | ||
| ./infer_demo yolov5s-seg.onnx 000000014439.jpg 2
 | ||
| ```
 | ||
| 运行完成可视化结果如下图所示
 | ||
| 
 | ||
| <img width="640" src="https://user-images.githubusercontent.com/19977378/209955620-657bdd1d-574c-40a2-b05d-42b9e5a15ae8.png">
 | ||
| 
 | ||
| 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:  
 | ||
| - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
 | ||
| 
 | ||
| ## YOLOv5Seg C++接口
 | ||
| 
 | ||
| ### YOLOv5Seg类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::detection::YOLOv5Seg(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::ONNX)
 | ||
| ```
 | ||
| 
 | ||
| YOLOv5Seg模型加载和初始化,其中model_file为导出的ONNX模型格式。
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(ModelFormat): 模型格式,默认为ONNX格式
 | ||
| 
 | ||
| #### Predict函数
 | ||
| 
 | ||
| ```c++
 | ||
| YOLOv5Seg::Predict(const cv::Mat& img, DetectionResult* result)
 | ||
| ```
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > > * **im**: 输入图像,注意需为HWC,BGR格式
 | ||
| > > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| - [模型介绍](../../)
 | ||
| - [Python部署](../python)
 | ||
| - [视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
 |