mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Support PPYOLOE plus model * Optimize ocr system code * modify example code * fix patchelf of openvino * optimize demo code of ocr * remove debug code * update demo code of ocr Co-authored-by: Jack Zhou <zhoushunjie@baidu.com>
1.4 KiB
1.4 KiB
FastDeploy Runtime使用文档
Runtime
作为FastDeploy中模型推理的模块,目前集成了多种后端,用户通过统一的后端即可快速完成不同格式的模型,在各硬件、平台、后端上的推理。本文档通过如下示例展示各硬件、后端上的推理
CPU推理
Python示例
import fastdeploy as fd
import numpy as np
option = fd.RuntimeOption()
# 设定模型路径
option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams")
# 使用OpenVINO后端
option.use_openvino_backend()
# 初始化runtime
runtime = fd.Runtime(option)
# 获取输入名
input_name = runtime.get_input_info(0).name
# 构造数据进行推理
results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")})
GPU推理
import fastdeploy as fd
import numpy as np
option = fd.RuntimeOption()
# 设定模型路径
option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams")
# 使用GPU,并且使用第0张GPU卡
option.use_gpu(0)
# 使用Paddle Inference后端
option.use_openvino_backend()
# 初始化runtime
runtime = fd.Runtime(option)
# 获取输入名
input_name = runtime.get_input_info(0).name
# 构造数据进行推理
results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")})
更多Python/C++推理示例请直接参考FastDeploy/examples/runtime