Files
FastDeploy/docs/en/faq/how_to_change_backend.md
charl-u 02eab973ce [Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md
2022-12-22 18:15:01 +08:00

52 lines
1.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [中文](../../cn/faq/how_to_change_backend.md)
# How to Change Model Inference Backend
FastDeploy supports various backends, including
- OpenVINO (supports Paddle/ONNX formats, CPU inference only )
- ONNX Runtime (supports Paddle/ONNX formats, inference on CPU/GPU)
- TensorRT (supports Paddle/ONNX formats, GPU inference only
- Paddle Inference (supports Paddle format, inference on CPU/GPU)
All models can backend via RuntimeOption
**Python**
```python
import fastdeploy as fd
option = fd.RuntimeOption()
# Change CPU/GPU
option.use_cpu()
option.use_gpu()
# Change the Backend
option.use_paddle_backend() # Paddle Inference
option.use_trt_backend() # TensorRT
option.use_openvino_backend() # OpenVINO
option.use_ort_backend() # ONNX Runtime
```
**C++**
```C++
fastdeploy::RuntimeOption option;
// Change CPU/GPU
option.UseCpu();
option.UseGpu();
// Change the Backend
option.UsePaddleBackend(); // Paddle Inference
option.UseTrtBackend(); // TensorRT
option.UseOpenVINOBackend(); // OpenVINO
option.UseOrtBackend(); // ONNX Runtime
```
For more specific demos, please refer to python or c++ inference code for different models under `FastDeploy/examples/vision`
For more deployment methods, please refer to FastDeploy API tutorials.
- [Python API]()
- [C++ API]()