mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 c91e99b5f5
			
		
	
	c91e99b5f5
	
	
	
		
			
			* Adjust folders structures in paddleclas * remove useless files * Update sophgo * improve readme
		
			
				
	
	
		
			74 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| [English](README.md) | 简体中文
 | ||
| 
 | ||
| # PaddleClas 模型在CPU与GPU上的部署方案-FastDeploy
 | ||
| 
 | ||
| ## 1. 说明  
 | ||
| PaddleClas支持通过FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署PaddleClas系列模型
 | ||
| 
 | ||
| ## 2. 模型版本说明
 | ||
| 
 | ||
| - [PaddleClas Release/2.4](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.4)
 | ||
| 
 | ||
| 目前FastDeploy支持如下模型的部署
 | ||
| 
 | ||
| - [PP-LCNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-LCNet.md)
 | ||
| - [PP-LCNetV2系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-LCNetV2.md)
 | ||
| - [EfficientNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md)
 | ||
| - [GhostNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md)
 | ||
| - [MobileNet系列模型(包含v1,v2,v3)](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md)
 | ||
| - [ShuffleNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md)
 | ||
| - [SqueezeNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Others.md)
 | ||
| - [Inception系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Inception.md)
 | ||
| - [PP-HGNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-HGNet.md)
 | ||
| - [ResNet系列模型(包含vd系列)](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/ResNet_and_vd.md)
 | ||
| 
 | ||
| ### 2.1 准备PaddleClas部署模型
 | ||
| 
 | ||
| PaddleClas模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)  
 | ||
| 
 | ||
| 注意:PaddleClas导出的模型仅包含`inference.pdmodel`和`inference.pdiparams`两个文件,但为了满足部署的需求,同时也需准备其提供的通用[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/deploy/configs/inference_cls.yaml)文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息,开发者可直接下载此文件使用。但需根据自己的需求修改yaml文件中的配置参数,具体可比照PaddleClas模型训练[config](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.4/ppcls/configs/ImageNet)中的infer部分的配置信息进行修改。
 | ||
| 
 | ||
| 
 | ||
| ### 2.2 下载预训练模型
 | ||
| 
 | ||
| 为了方便开发者的测试,下面提供了PaddleClas导出的部分模型(含inference_cls.yaml文件),开发者可直接下载使用。
 | ||
| 
 | ||
| | 模型                                                               | 参数文件大小    |输入Shape |  Top1 | Top5 |
 | ||
| |:---------------------------------------------------------------- |:----- |:----- | :----- | :----- |
 | ||
| | [PPLCNet_x1_0](https://bj.bcebos.com/paddlehub/fastdeploy/PPLCNet_x1_0_infer.tgz) | 12MB | 224x224 |71.32% | 90.03% |
 | ||
| | [PPLCNetV2_base](https://bj.bcebos.com/paddlehub/fastdeploy/PPLCNetV2_base_infer.tgz)  | 26MB  | 224x224 |77.04% | 93.27% |
 | ||
| | [EfficientNetB7](https://bj.bcebos.com/paddlehub/fastdeploy/EfficientNetB7_infer.tgz) |  255MB | 600x600 | 84.3% | 96.9% |
 | ||
| | [EfficientNetB0](https://bj.bcebos.com/paddlehub/fastdeploy/EfficientNetB0_infer.tgz)|  19MB | 224x224 | 77.38% | 93.31% |
 | ||
| | [EfficientNetB0_small](https://bj.bcebos.com/paddlehub/fastdeploy/EfficientNetB0_small_infer.tgz)|  18MB | 224x224 | 75.8% | 92.58% |
 | ||
| | [GhostNet_x1_3](https://bj.bcebos.com/paddlehub/fastdeploy/GhostNet_x1_3_infer.tgz) |  27MB | 224x224 | 75.79% | 92.54% |
 | ||
| | [GhostNet_x1_3_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/GhostNet_x1_3_ssld_infer.tgz) |  29MB | 224x224 | 79.3% | 94.49% |
 | ||
| | [GhostNet_x0_5](https://bj.bcebos.com/paddlehub/fastdeploy/GhostNet_x0_5_infer.tgz) |  10MB | 224x224 | 66.8% | 86.9% |
 | ||
| | [MobileNetV1_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_x0_25_infer.tgz) |  1.9MB | 224x224 | 51.4% | 75.5% |
 | ||
| | [MobileNetV1_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_ssld_infer.tgz) |  17MB | 224x224 | 77.9% | 93.9% |
 | ||
| | [MobileNetV2_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV2_x0_25_infer.tgz) |  5.9MB | 224x224 | 53.2% | 76.5% |
 | ||
| | [MobileNetV2](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV2_infer.tgz) |  13MB | 224x224 | 72.15% | 90.65% |
 | ||
| | [MobileNetV2_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV2_ssld_infer.tgz) |  14MB | 224x224 | 76.74% | 93.39% |
 | ||
| | [MobileNetV3_small_x1_0](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV3_small_x1_0_infer.tgz) |  11MB | 224x224 | 68.24% | 88.06% |
 | ||
| | [MobileNetV3_small_x0_35_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV3_small_x0_35_ssld_infer.tgz) |  6.4MB | 224x224 | 55.55% | 77.71% |
 | ||
| | [MobileNetV3_large_x1_0_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV3_large_x1_0_ssld_infer.tgz) |  22MB | 224x224 | 78.96% | 94.48% |
 | ||
| | [ShuffleNetV2_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/ShuffleNetV2_x0_25_infer.tgz) |  2.4MB | 224x224 | 49.9% | 73.79% |
 | ||
| | [ShuffleNetV2_x2_0](https://bj.bcebos.com/paddlehub/fastdeploy/ShuffleNetV2_x2_0_infer.tgz) |  29MB | 224x224 | 73.15% | 91.2% |
 | ||
| | [SqueezeNet1_1](https://bj.bcebos.com/paddlehub/fastdeploy/SqueezeNet1_1_infer.tgz) |  4.8MB | 224x224 | 60.1% | 81.9% |
 | ||
| | [InceptionV3](https://bj.bcebos.com/paddlehub/fastdeploy/InceptionV3_infer.tgz) |  92MB | 299x299 | 79.14% | 94.59% |
 | ||
| | [PPHGNet_tiny_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/PPHGNet_tiny_ssld_infer.tgz) |  57MB | 224x224 | 81.95% | 96.12% |
 | ||
| | [PPHGNet_small](https://bj.bcebos.com/paddlehub/fastdeploy/PPHGNet_small_infer.tgz) |  87MB | 224x224 | 81.51% | 95.82% |
 | ||
| | [PPHGNet_base_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/PPHGNet_base_ssld_infer.tgz) |  274MB | 224x224 | 85.0% | 97.35% |
 | ||
| | [ResNet50_vd](https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz) |  98MB | 224x224 | 79.12% | 94.44% |
 | ||
| | [ResNet50](https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_infer.tgz) |  91MB | 224x224 | 76.5% | 93% |
 | ||
| | [ResNeXt50_32x4d](https://bj.bcebos.com/paddlehub/fastdeploy/ResNeXt50_32x4d_infer.tgz) |  89MB | 224x224 | 77.75% | 93.82% |
 | ||
| | [DenseNet121](https://bj.bcebos.com/paddlehub/fastdeploy/DenseNet121_infer.tgz) |  29MB | 224x224 | 75.66% | 92.58% |
 | ||
| | [PULC_person_exists](https://bj.bcebos.com/paddlehub/fastdeploy/person_exists_infer.tgz) |  6MB | 224x224 |  |  |
 | ||
| | [ViT_large_patch16_224](https://bj.bcebos.com/paddlehub/fastdeploy/ViT_large_patch16_224_infer.tgz) |  1.1GB | 224x224 | 83.23% |  96.50%|
 | ||
| 
 | ||
| 
 | ||
| ## 3. 详细部署的部署示例  
 | ||
| - [Python部署](python)
 | ||
| - [C++部署](cpp)
 | ||
| - [C部署](c)
 | ||
| - [C#部署](csharp)
 |