Files
FastDeploy/fastdeploy/vision/visualize/remove_small_connnected_area.cc
Jason 8ba4a26ebb Refine cpp/python api of visualize with lots of deprecated apis (#303)
* fix patchelf

* refine visualize api

* Update CMakeLists.txt

* refine visualize api

* add libs directory

* Create __init__.py
2022-09-29 14:06:45 +08:00

114 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef ENABLE_VISION_VISUALIZE
#include "fastdeploy/vision/visualize/visualize.h"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
namespace fastdeploy {
namespace vision {
cv::Mat RemoveSmallConnectedArea(const cv::Mat& alpha_pred, float threshold) {
cv::Mat gray, binary;
alpha_pred.convertTo(gray, CV_8UC1, 255.f);
cv::Mat alpha_pred_clone = alpha_pred.clone();
// 255 * 0.05 ~ 13
unsigned int binary_threshold = static_cast<unsigned int>(255.f * threshold);
cv::threshold(gray, binary, binary_threshold, 255, cv::THRESH_BINARY);
// morphologyEx with OPEN operation to remove noise first.
auto kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3, 3),
cv::Point(-1, -1));
cv::morphologyEx(binary, binary, cv::MORPH_OPEN, kernel);
// Computationally connected domain
cv::Mat labels = cv::Mat::zeros(alpha_pred_clone.size(), CV_32S);
cv::Mat stats, centroids;
int num_labels =
cv::connectedComponentsWithStats(binary, labels, stats, centroids, 8, 4);
if (num_labels <= 1) {
// no noise, skip.
return alpha_pred;
}
// find max connected area, 0 is background
int max_connected_id = 1; // 1,2,...
int max_connected_area = stats.at<int>(max_connected_id, cv::CC_STAT_AREA);
for (int i = 1; i < num_labels; ++i) {
int tmp_connected_area = stats.at<int>(i, cv::CC_STAT_AREA);
if (tmp_connected_area > max_connected_area) {
max_connected_area = tmp_connected_area;
max_connected_id = i;
}
}
const int h = alpha_pred_clone.rows;
const int w = alpha_pred_clone.cols;
// remove small connected area.
for (int i = 0; i < h; ++i) {
int* label_row_ptr = labels.ptr<int>(i);
float* alpha_row_ptr = alpha_pred_clone.ptr<float>(i);
for (int j = 0; j < w; ++j) {
if (label_row_ptr[j] != max_connected_id) alpha_row_ptr[j] = 0.f;
}
}
return alpha_pred_clone;
}
cv::Mat Visualize::RemoveSmallConnectedArea(const cv::Mat& alpha_pred,
float threshold) {
cv::Mat gray, binary;
alpha_pred.convertTo(gray, CV_8UC1, 255.f);
cv::Mat alpha_pred_clone = alpha_pred.clone();
// 255 * 0.05 ~ 13
unsigned int binary_threshold = static_cast<unsigned int>(255.f * threshold);
cv::threshold(gray, binary, binary_threshold, 255, cv::THRESH_BINARY);
// morphologyEx with OPEN operation to remove noise first.
auto kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3, 3),
cv::Point(-1, -1));
cv::morphologyEx(binary, binary, cv::MORPH_OPEN, kernel);
// Computationally connected domain
cv::Mat labels = cv::Mat::zeros(alpha_pred_clone.size(), CV_32S);
cv::Mat stats, centroids;
int num_labels =
cv::connectedComponentsWithStats(binary, labels, stats, centroids, 8, 4);
if (num_labels <= 1) {
// no noise, skip.
return alpha_pred;
}
// find max connected area, 0 is background
int max_connected_id = 1; // 1,2,...
int max_connected_area = stats.at<int>(max_connected_id, cv::CC_STAT_AREA);
for (int i = 1; i < num_labels; ++i) {
int tmp_connected_area = stats.at<int>(i, cv::CC_STAT_AREA);
if (tmp_connected_area > max_connected_area) {
max_connected_area = tmp_connected_area;
max_connected_id = i;
}
}
const int h = alpha_pred_clone.rows;
const int w = alpha_pred_clone.cols;
// remove small connected area.
for (int i = 0; i < h; ++i) {
int* label_row_ptr = labels.ptr<int>(i);
float* alpha_row_ptr = alpha_pred_clone.ptr<float>(i);
for (int j = 0; j < w; ++j) {
if (label_row_ptr[j] != max_connected_id) alpha_row_ptr[j] = 0.f;
}
}
return alpha_pred_clone;
}
} // namespace vision
} // namespace fastdeploy
#endif