mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
49 lines
1.6 KiB
C++
49 lines
1.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace utils {
|
|
|
|
float CosineSimilarity(const std::vector<float>& a, const std::vector<float>& b,
|
|
bool normalized) {
|
|
FDASSERT((a.size() == b.size()) && (a.size() != 0),
|
|
"The size of a and b must be equal and >= 1.");
|
|
size_t num_val = a.size();
|
|
if (normalized) {
|
|
float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
|
|
for (size_t i = 0; i < num_val; ++i) {
|
|
mul_a += (a[i] * a[i]);
|
|
mul_b += (b[i] * b[i]);
|
|
mul_ab += (a[i] * b[i]);
|
|
}
|
|
return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
|
|
}
|
|
auto norm_a = L2Normalize(a);
|
|
auto norm_b = L2Normalize(b);
|
|
float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
|
|
for (size_t i = 0; i < num_val; ++i) {
|
|
mul_a += (norm_a[i] * norm_a[i]);
|
|
mul_b += (norm_b[i] * norm_b[i]);
|
|
mul_ab += (norm_a[i] * norm_b[i]);
|
|
}
|
|
return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
|
|
}
|
|
|
|
} // namespace utils
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|