Files
FastDeploy/fastdeploy/vision/facedet/contrib/yolov5face.h
2022-09-23 11:02:00 +08:00

75 lines
2.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
class FASTDEPLOY_DECL YOLOv5Face : public FastDeployModel {
public:
YOLOv5Face(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov5-face"; }
virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
float conf_threshold = 0.25,
float nms_iou_threshold = 0.5);
// tuple of (width, height)
std::vector<int> size;
// padding value, size should be same with Channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true, will resize the image to
// the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out, the maximum
// resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
// setup the number of landmarks for per face (if have), default 5 in
// official yolov5face note that, the outupt tensor's shape must be:
// (1,n,4+1+2*landmarks_per_face+1=box+obj+landmarks+cls)
int landmarks_per_face;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* outputs,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(FDTensor& infer_result, FaceDetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
bool IsDynamicInput() const { return is_dynamic_input_; }
bool is_dynamic_input_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy