Files
FastDeploy/fastdeploy/vision/facedet/contrib/retinaface.h
2022-09-23 11:02:00 +08:00

70 lines
2.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
class FASTDEPLOY_DECL RetinaFace : public FastDeployModel {
public:
RetinaFace(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "Pytorch_Retinaface"; }
virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
float conf_threshold = 0.25f,
float nms_iou_threshold = 0.4f);
// tuple of (width, height), default (640, 640)
std::vector<int> size;
// variance in RetinaFace's prior-box(anchor) generate process,
// default (0.1, 0.2)
std::vector<float> variance;
// downsample strides (namely, steps) for RetinaFace to
// generate anchors, will take (8,16,32) as default values.
std::vector<int> downsample_strides;
// min sizes, width and height for each anchor.
std::vector<std::vector<int>> min_sizes;
// landmarks_per_face, default 5 in RetinaFace
int landmarks_per_face;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(std::vector<FDTensor>& infer_result,
FaceDetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
bool IsDynamicInput() const { return is_dynamic_input_; }
bool is_dynamic_input_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy