Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov7end2end_trt.h
2022-09-23 11:02:00 +08:00

72 lines
2.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
class FASTDEPLOY_DECL YOLOv7End2EndTRT : public FastDeployModel {
public:
YOLOv7End2EndTRT(const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
virtual std::string ModelName() const { return "yolov7end2end_trt"; }
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25);
// tuple of (width, height)
std::vector<int> size;
// padding value, size should be same with Channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true, will resize the image to
// the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out, the maximum
// resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(std::vector<FDTensor>& infer_results,
DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold);
void LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill = false, bool scale_up = true,
int stride = 32);
bool is_dynamic_input_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy