Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov7end2end_trt.cc
2022-09-22 13:24:05 +08:00

267 lines
9.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov7end2end_trt.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
void YOLOv7End2EndTRT::LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill, bool scale_up, int stride) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
YOLOv7End2EndTRT::YOLOv7End2EndTRT(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {}; // NO CPU
valid_gpu_backends = {Backend::TRT}; // NO ORT
} else {
valid_cpu_backends = {Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
if (runtime_option.device != Device::GPU) {
FDWARNING << Str(runtime_option.device)
<< " is not support for YOLOv7End2EndTRT,"
<< "will fallback to Device::GPU." << std::endl;
runtime_option.device = Device::GPU;
}
if (runtime_option.backend != Backend::UNKNOWN) {
if (runtime_option.backend != Backend::TRT) {
FDWARNING << Str(runtime_option.backend)
<< " is not support for YOLOv7End2EndTRT,"
<< "will fallback to Backend::TRT." << std::endl;
runtime_option.backend = Backend::TRT;
}
}
initialized = Initialize();
}
bool YOLOv7End2EndTRT::Initialize() {
// parameters for preprocess
size = {640, 640};
padding_value = {114.0, 114.0, 114.0};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = false;
stride = 32;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
if (!is_dynamic_input_) {
is_mini_pad = false;
}
return true;
}
bool YOLOv7End2EndTRT::Preprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
if (ratio != 1.0) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
YOLOv7End2EndTRT::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
is_scale_up, stride);
BGR2RGB::Run(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool YOLOv7End2EndTRT::Postprocess(
std::vector<FDTensor>& infer_results, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold) {
FDASSERT(infer_results.size() == 4, "Output tensor size must be 4.");
FDTensor& num_tensor = infer_results.at(0); // INT32
FDTensor& boxes_tensor = infer_results.at(1); // FLOAT
FDTensor& scores_tensor = infer_results.at(2); // FLOAT
FDTensor& classes_tensor = infer_results.at(3); // INT32
FDASSERT(num_tensor.dtype == FDDataType::INT32,
"The dtype of num_dets must be INT32.");
FDASSERT(boxes_tensor.dtype == FDDataType::FP32,
"The dtype of det_boxes_tensor must be FP32.");
FDASSERT(scores_tensor.dtype == FDDataType::FP32,
"The dtype of det_scores_tensor must be FP32.");
FDASSERT(classes_tensor.dtype == FDDataType::INT32,
"The dtype of det_classes_tensor must be INT32.");
FDASSERT(num_tensor.shape[0] == 1, "Only support batch=1 now.");
// post-process for end2end yolov7 after trt nms.
float* boxes_data = static_cast<float*>(boxes_tensor.Data()); // (1,100,4)
float* scores_data = static_cast<float*>(scores_tensor.Data()); // (1,100)
int32_t* classes_data =
static_cast<int32_t*>(classes_tensor.Data()); // (1,100)
int32_t num_dets_after_trt_nms = static_cast<int32_t*>(num_tensor.Data())[0];
if (num_dets_after_trt_nms == 0) {
return true;
}
result->Clear();
result->Reserve(num_dets_after_trt_nms);
for (size_t i = 0; i < num_dets_after_trt_nms; ++i) {
float confidence = scores_data[i];
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = classes_data[i];
float x1 = boxes_data[(i * 4) + 0];
float y1 = boxes_data[(i * 4) + 1];
float x2 = boxes_data[(i * 4) + 2];
float y2 = boxes_data[(i * 4) + 3];
result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
if (result->boxes.size() == 0) {
return true;
}
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2.0f;
float pad_w = (out_w - ipt_w * scale) / 2.0f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOv7End2EndTRT::Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, result, im_info, conf_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy