Files
FastDeploy/fastdeploy/vision/common/result.h
2022-10-07 13:38:58 +00:00

220 lines
5.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "opencv2/core/core.hpp"
namespace fastdeploy {
/** \brief All C++ FastDeploy Vision Models APIs are defined inside this namespace
*
*/
namespace vision {
enum FASTDEPLOY_DECL ResultType {
UNKNOWN_RESULT,
CLASSIFY,
DETECTION,
SEGMENTATION,
OCR,
FACE_DETECTION,
FACE_RECOGNITION,
MATTING,
MASK
};
struct FASTDEPLOY_DECL BaseResult {
ResultType type = ResultType::UNKNOWN_RESULT;
};
/*! @brief Classify result structure for all the image classify models
*/
struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
/// Classify result for an image
std::vector<int32_t> label_ids;
/// The confidence for each classify result
std::vector<float> scores;
ResultType type = ResultType::CLASSIFY;
/// Clear result
void Clear();
/// Debug function, convert the result to string to print
std::string Str();
};
/*! Mask structure, used in DetectionResult for instance segmentation models
*/
struct FASTDEPLOY_DECL Mask : public BaseResult {
/// Mask data buffer
std::vector<int32_t> data;
/// Shape of mask
std::vector<int64_t> shape; // (H,W) ...
ResultType type = ResultType::MASK;
/// clear mask
void Clear();
/// Return a mutable pointer of the mask data buffer
void* Data() { return data.data(); }
/// Return a pointer of the mask data buffer for read only
const void* Data() const { return data.data(); }
/// Reserve size for mask data buffer
void Reserve(int size);
/// Resize the mask data buffer
void Resize(int size);
/// Debug function, convert the result to string to print
std::string Str();
};
/*! @brief Detection result structure for all the object detection models and instance segmentation models
*/
struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
/** \brief All the detected object boxes for an input image, the size of `boxes` is the number of detected objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax]
*/
std::vector<std::array<float, 4>> boxes;
/** \brief The confidence for all the detected objects
*/
std::vector<float> scores;
/// The classify label for all the detected objects
std::vector<int32_t> label_ids;
/** \brief For instance segmentation model, `masks` is the predict mask for all the deteced objects
*/
std::vector<Mask> masks;
//// Shows if the DetectionResult has mask
bool contain_masks = false;
ResultType type = ResultType::DETECTION;
DetectionResult() {}
DetectionResult(const DetectionResult& res);
/// Clear detection result
void Clear();
void Reserve(int size);
void Resize(int size);
/// Debug function, convert the result to string to print
std::string Str();
};
struct FASTDEPLOY_DECL OCRResult : public BaseResult {
std::vector<std::array<int, 8>> boxes;
std::vector<std::string> text;
std::vector<float> rec_scores;
std::vector<float> cls_scores;
std::vector<int32_t> cls_labels;
ResultType type = ResultType::OCR;
void Clear();
std::string Str();
};
struct FASTDEPLOY_DECL FaceDetectionResult : public BaseResult {
// box: xmin, ymin, xmax, ymax
std::vector<std::array<float, 4>> boxes;
// landmark: x, y, landmarks may empty if the
// model don't detect face with landmarks.
// Note, one face might have multiple landmarks,
// such as 5/19/21/68/98/..., etc.
std::vector<std::array<float, 2>> landmarks;
std::vector<float> scores;
ResultType type = ResultType::FACE_DETECTION;
// set landmarks_per_face manually in your post processes.
int landmarks_per_face;
FaceDetectionResult() { landmarks_per_face = 0; }
FaceDetectionResult(const FaceDetectionResult& res);
void Clear();
void Reserve(int size);
void Resize(int size);
std::string Str();
};
struct FASTDEPLOY_DECL SegmentationResult : public BaseResult {
// mask
std::vector<uint8_t> label_map;
std::vector<float> score_map;
std::vector<int64_t> shape;
bool contain_score_map = false;
ResultType type = ResultType::SEGMENTATION;
void Clear();
void Reserve(int size);
void Resize(int size);
std::string Str();
};
struct FASTDEPLOY_DECL FaceRecognitionResult : public BaseResult {
// face embedding vector with 128/256/512 ... dim
std::vector<float> embedding;
ResultType type = ResultType::FACE_RECOGNITION;
FaceRecognitionResult() {}
FaceRecognitionResult(const FaceRecognitionResult& res);
void Clear();
void Reserve(int size);
void Resize(int size);
std::string Str();
};
struct FASTDEPLOY_DECL MattingResult : public BaseResult {
// alpha matte and fgr (predicted foreground: HWC/BGR float32)
std::vector<float> alpha; // h x w
std::vector<float> foreground; // h x w x c (c=3 default)
// height, width, channel for foreground and alpha
// must be (h,w,c) and setup before Reserve and Resize
// c is only for foreground if contain_foreground is true.
std::vector<int64_t> shape;
bool contain_foreground = false;
ResultType type = ResultType::MATTING;
MattingResult() {}
MattingResult(const MattingResult& res);
void Clear();
void Reserve(int size);
void Resize(int size);
std::string Str();
};
} // namespace vision
} // namespace fastdeploy