Files
FastDeploy/fastdeploy/vision/common/processors/mat.cc
huangjianhui 625845c7d6 Update ppseg with eigen functions (#238)
* Update ppseg backend support type

* Update ppseg preprocess if condition

* Update README.md

* Update README.md

* Update README.md

* Update ppseg with eigen functions

* Delete old argmax function

* Update README.md

* Delete apply_softmax in ppseg example demo

* Update ppseg code with createFromTensor function

* Delete FDTensor2CVMat function

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update ppseg model.cc with transpose&&softmax in place convert

* Update segmentation_result.md

* Update model.cc

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-09-22 21:21:47 +08:00

172 lines
4.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/mat.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
namespace vision {
#ifdef ENABLE_OPENCV_CUDA
cv::cuda::GpuMat* Mat::GetGpuMat() {
if (device == Device::CPU) {
gpu_mat.upload(cpu_mat);
}
return &gpu_mat;
}
#endif
cv::Mat* Mat::GetCpuMat() {
#ifdef ENABLE_OPENCV_CUDA
if (device == Device::GPU) {
gpu_mat.download(cpu_mat);
}
#endif
return &cpu_mat;
}
void Mat::ShareWithTensor(FDTensor* tensor) {
if (device == Device::GPU) {
#ifdef ENABLE_OPENCV_CUDA
tensor->SetExternalData({Channels(), Height(), Width()}, Type(),
GetGpuMat()->ptr());
tensor->device = Device::GPU;
#endif
} else {
tensor->SetExternalData({Channels(), Height(), Width()}, Type(),
GetCpuMat()->ptr());
tensor->device = Device::CPU;
}
if (layout == Layout::HWC) {
tensor->shape = {Height(), Width(), Channels()};
}
}
bool Mat::CopyToTensor(FDTensor* tensor) {
cv::Mat* im = GetCpuMat();
int total_bytes = im->total() * im->elemSize();
if (total_bytes != tensor->Nbytes()) {
FDERROR << "While copy Mat to Tensor, requires the memory size be same, "
"but now size of Tensor = "
<< tensor->Nbytes() << ", size of Mat = " << total_bytes << "."
<< std::endl;
return false;
}
memcpy(tensor->MutableData(), im->ptr(), im->total() * im->elemSize());
return true;
}
void Mat::PrintInfo(const std::string& flag) {
cv::Mat* im = GetCpuMat();
cv::Scalar mean = cv::mean(*im);
std::cout << flag << ": "
<< "Channel=" << Channels() << ", height=" << Height()
<< ", width=" << Width() << ", mean=";
for (int i = 0; i < Channels(); ++i) {
std::cout << mean[i] << " ";
}
std::cout << std::endl;
}
FDDataType Mat::Type() {
int type = -1;
if (device == Device::GPU) {
#ifdef ENABLE_OPENCV_CUDA
type = gpu_mat.type();
#endif
} else {
type = cpu_mat.type();
}
if (type < 0) {
FDASSERT(false,
"While calling Mat::Type(), get negative value, which is not "
"expected!.");
}
type = type % 8;
if (type == 0) {
return FDDataType::UINT8;
} else if (type == 1) {
return FDDataType::INT8;
} else if (type == 2) {
FDASSERT(false,
"While calling Mat::Type(), get UINT16 type which is not "
"supported now.");
} else if (type == 3) {
return FDDataType::INT16;
} else if (type == 4) {
return FDDataType::INT32;
} else if (type == 5) {
return FDDataType::FP32;
} else if (type == 6) {
return FDDataType::FP64;
} else {
FDASSERT(
false,
"While calling Mat::Type(), get type = %d, which is not expected!.",
type);
}
}
Mat CreateFromTensor(const FDTensor& tensor) {
int type = tensor.dtype;
cv::Mat temp_mat;
FDASSERT(tensor.shape.size() == 3,
"When create FD Mat from tensor, tensor shape should be 3-Dim, HWC "
"layout");
int64_t height = tensor.shape[0];
int64_t width = tensor.shape[1];
int64_t channel = tensor.shape[2];
switch (type) {
case FDDataType::UINT8:
temp_mat = cv::Mat(height, width, CV_8UC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT8:
temp_mat = cv::Mat(height, width, CV_8SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT16:
temp_mat = cv::Mat(height, width, CV_16SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT32:
temp_mat = cv::Mat(height, width, CV_32SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::FP32:
temp_mat = cv::Mat(height, width, CV_32FC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::FP64:
temp_mat = cv::Mat(height, width, CV_64FC(channel),
const_cast<void*>(tensor.Data()));
break;
default:
FDASSERT(
false,
"Tensor type %d is not supported While calling CreateFromTensor.",
type);
break;
}
Mat mat = Mat(temp_mat);
return mat;
}
} // namespace vision
} // namespace fastdeploy