mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Update ppseg backend support type * Update ppseg preprocess if condition * Update README.md * Update README.md * Update README.md * Update ppseg with eigen functions * Delete old argmax function * Update README.md * Delete apply_softmax in ppseg example demo * Update ppseg code with createFromTensor function * Delete FDTensor2CVMat function * Update README.md * Update README.md * Update README.md * Update README.md * Update ppseg model.cc with transpose&&softmax in place convert * Update segmentation_result.md * Update model.cc * Update README.md * Update README.md Co-authored-by: Jason <jiangjiajun@baidu.com>
172 lines
4.8 KiB
C++
172 lines
4.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
#ifdef ENABLE_OPENCV_CUDA
|
|
cv::cuda::GpuMat* Mat::GetGpuMat() {
|
|
if (device == Device::CPU) {
|
|
gpu_mat.upload(cpu_mat);
|
|
}
|
|
return &gpu_mat;
|
|
}
|
|
#endif
|
|
|
|
cv::Mat* Mat::GetCpuMat() {
|
|
#ifdef ENABLE_OPENCV_CUDA
|
|
if (device == Device::GPU) {
|
|
gpu_mat.download(cpu_mat);
|
|
}
|
|
#endif
|
|
return &cpu_mat;
|
|
}
|
|
|
|
void Mat::ShareWithTensor(FDTensor* tensor) {
|
|
if (device == Device::GPU) {
|
|
#ifdef ENABLE_OPENCV_CUDA
|
|
tensor->SetExternalData({Channels(), Height(), Width()}, Type(),
|
|
GetGpuMat()->ptr());
|
|
tensor->device = Device::GPU;
|
|
#endif
|
|
} else {
|
|
tensor->SetExternalData({Channels(), Height(), Width()}, Type(),
|
|
GetCpuMat()->ptr());
|
|
tensor->device = Device::CPU;
|
|
}
|
|
if (layout == Layout::HWC) {
|
|
tensor->shape = {Height(), Width(), Channels()};
|
|
}
|
|
}
|
|
|
|
bool Mat::CopyToTensor(FDTensor* tensor) {
|
|
cv::Mat* im = GetCpuMat();
|
|
int total_bytes = im->total() * im->elemSize();
|
|
if (total_bytes != tensor->Nbytes()) {
|
|
FDERROR << "While copy Mat to Tensor, requires the memory size be same, "
|
|
"but now size of Tensor = "
|
|
<< tensor->Nbytes() << ", size of Mat = " << total_bytes << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
memcpy(tensor->MutableData(), im->ptr(), im->total() * im->elemSize());
|
|
return true;
|
|
}
|
|
|
|
void Mat::PrintInfo(const std::string& flag) {
|
|
cv::Mat* im = GetCpuMat();
|
|
cv::Scalar mean = cv::mean(*im);
|
|
std::cout << flag << ": "
|
|
<< "Channel=" << Channels() << ", height=" << Height()
|
|
<< ", width=" << Width() << ", mean=";
|
|
for (int i = 0; i < Channels(); ++i) {
|
|
std::cout << mean[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
FDDataType Mat::Type() {
|
|
int type = -1;
|
|
if (device == Device::GPU) {
|
|
#ifdef ENABLE_OPENCV_CUDA
|
|
type = gpu_mat.type();
|
|
#endif
|
|
} else {
|
|
type = cpu_mat.type();
|
|
}
|
|
if (type < 0) {
|
|
FDASSERT(false,
|
|
"While calling Mat::Type(), get negative value, which is not "
|
|
"expected!.");
|
|
}
|
|
type = type % 8;
|
|
if (type == 0) {
|
|
return FDDataType::UINT8;
|
|
} else if (type == 1) {
|
|
return FDDataType::INT8;
|
|
} else if (type == 2) {
|
|
FDASSERT(false,
|
|
"While calling Mat::Type(), get UINT16 type which is not "
|
|
"supported now.");
|
|
} else if (type == 3) {
|
|
return FDDataType::INT16;
|
|
} else if (type == 4) {
|
|
return FDDataType::INT32;
|
|
} else if (type == 5) {
|
|
return FDDataType::FP32;
|
|
} else if (type == 6) {
|
|
return FDDataType::FP64;
|
|
} else {
|
|
FDASSERT(
|
|
false,
|
|
"While calling Mat::Type(), get type = %d, which is not expected!.",
|
|
type);
|
|
}
|
|
}
|
|
|
|
Mat CreateFromTensor(const FDTensor& tensor) {
|
|
int type = tensor.dtype;
|
|
cv::Mat temp_mat;
|
|
FDASSERT(tensor.shape.size() == 3,
|
|
"When create FD Mat from tensor, tensor shape should be 3-Dim, HWC "
|
|
"layout");
|
|
int64_t height = tensor.shape[0];
|
|
int64_t width = tensor.shape[1];
|
|
int64_t channel = tensor.shape[2];
|
|
switch (type) {
|
|
case FDDataType::UINT8:
|
|
temp_mat = cv::Mat(height, width, CV_8UC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
case FDDataType::INT8:
|
|
temp_mat = cv::Mat(height, width, CV_8SC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
case FDDataType::INT16:
|
|
temp_mat = cv::Mat(height, width, CV_16SC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
case FDDataType::INT32:
|
|
temp_mat = cv::Mat(height, width, CV_32SC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
case FDDataType::FP32:
|
|
temp_mat = cv::Mat(height, width, CV_32FC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
case FDDataType::FP64:
|
|
temp_mat = cv::Mat(height, width, CV_64FC(channel),
|
|
const_cast<void*>(tensor.Data()));
|
|
break;
|
|
|
|
default:
|
|
FDASSERT(
|
|
false,
|
|
"Tensor type %d is not supported While calling CreateFromTensor.",
|
|
type);
|
|
break;
|
|
}
|
|
Mat mat = Mat(temp_mat);
|
|
return mat;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|