Files
FastDeploy/fastdeploy/backends/tensorrt/utils.h
2022-09-14 15:44:13 +08:00

279 lines
7.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda_runtime_api.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "NvInfer.h"
#include "fastdeploy/core/allocate.h"
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
struct FDInferDeleter {
template <typename T>
void operator()(T* obj) const {
if (obj) {
obj->destroy();
}
}
};
template <typename T>
using FDUniquePtr = std::unique_ptr<T, FDInferDeleter>;
int64_t Volume(const nvinfer1::Dims& d);
nvinfer1::Dims ToDims(const std::vector<int>& vec);
nvinfer1::Dims ToDims(const std::vector<int64_t>& vec);
size_t TrtDataTypeSize(const nvinfer1::DataType& dtype);
FDDataType GetFDDataType(const nvinfer1::DataType& dtype);
nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype);
std::vector<int> ToVec(const nvinfer1::Dims& dim);
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& vec) {
out << "[";
for (size_t i = 0; i < vec.size(); ++i) {
if (i != vec.size() - 1) {
out << vec[i] << ", ";
} else {
out << vec[i] << "]";
}
}
return out;
}
template <typename AllocFunc, typename FreeFunc>
class FDGenericBuffer {
public:
//!
//! \brief Construct an empty buffer.
//!
explicit FDGenericBuffer(nvinfer1::DataType type = nvinfer1::DataType::kFLOAT)
: mSize(0),
mCapacity(0),
mType(type),
mBuffer(nullptr),
mExternal_buffer(nullptr) {}
//!
//! \brief Construct a buffer with the specified allocation size in bytes.
//!
FDGenericBuffer(size_t size, nvinfer1::DataType type)
: mSize(size), mCapacity(size), mType(type) {
if (!allocFn(&mBuffer, this->nbBytes())) {
throw std::bad_alloc();
}
}
//!
//! \brief This use to skip memory copy step.
//!
FDGenericBuffer(size_t size, nvinfer1::DataType type, void* buffer)
: mSize(size), mCapacity(size), mType(type) {
mExternal_buffer = buffer;
}
FDGenericBuffer(FDGenericBuffer&& buf)
: mSize(buf.mSize),
mCapacity(buf.mCapacity),
mType(buf.mType),
mBuffer(buf.mBuffer) {
buf.mSize = 0;
buf.mCapacity = 0;
buf.mType = nvinfer1::DataType::kFLOAT;
buf.mBuffer = nullptr;
}
FDGenericBuffer& operator=(FDGenericBuffer&& buf) {
if (this != &buf) {
freeFn(mBuffer);
mSize = buf.mSize;
mCapacity = buf.mCapacity;
mType = buf.mType;
mBuffer = buf.mBuffer;
// Reset buf.
buf.mSize = 0;
buf.mCapacity = 0;
buf.mBuffer = nullptr;
}
return *this;
}
//!
//! \brief Returns pointer to underlying array.
//!
void* data() {
if (mExternal_buffer != nullptr) return mExternal_buffer;
return mBuffer;
}
//!
//! \brief Returns pointer to underlying array.
//!
const void* data() const {
if (mExternal_buffer != nullptr) return mExternal_buffer;
return mBuffer;
}
//!
//! \brief Returns the size (in number of elements) of the buffer.
//!
size_t size() const { return mSize; }
//!
//! \brief Returns the size (in bytes) of the buffer.
//!
size_t nbBytes() const { return this->size() * TrtDataTypeSize(mType); }
//!
//! \brief Set user memory buffer for TRT Buffer
//!
void SetExternalData(size_t size, nvinfer1::DataType type, void* buffer) {
mSize = mCapacity = size;
mType = type;
mExternal_buffer = const_cast<void*>(buffer);
}
//!
//! \brief Set user memory buffer for TRT Buffer
//!
void SetExternalData(const nvinfer1::Dims& dims, const void* buffer) {
mSize = mCapacity = Volume(dims);
mExternal_buffer = const_cast<void*>(buffer);
}
//!
//! \brief Resizes the buffer. This is a no-op if the new size is smaller than
//! or equal to the current capacity.
//!
void resize(size_t newSize) {
mExternal_buffer = nullptr;
mSize = newSize;
if (mCapacity < newSize) {
freeFn(mBuffer);
if (!allocFn(&mBuffer, this->nbBytes())) {
throw std::bad_alloc{};
}
mCapacity = newSize;
}
}
//!
//! \brief Overload of resize that accepts Dims
//!
void resize(const nvinfer1::Dims& dims) { return this->resize(Volume(dims)); }
~FDGenericBuffer() {
mExternal_buffer = nullptr;
freeFn(mBuffer);
}
private:
size_t mSize{0}, mCapacity{0};
nvinfer1::DataType mType;
void* mBuffer;
void* mExternal_buffer;
AllocFunc allocFn;
FreeFunc freeFn;
};
using FDDeviceBuffer = FDGenericBuffer<FDDeviceAllocator, FDDeviceFree>;
class FDTrtLogger : public nvinfer1::ILogger {
public:
static FDTrtLogger* logger;
static FDTrtLogger* Get() {
if (logger != nullptr) {
return logger;
}
logger = new FDTrtLogger();
return logger;
}
void log(nvinfer1::ILogger::Severity severity,
const char* msg) noexcept override {
if (severity == nvinfer1::ILogger::Severity::kINFO) {
// Disable this log
// FDINFO << msg << std::endl;
} else if (severity == nvinfer1::ILogger::Severity::kWARNING) {
// Disable this log
// FDWARNING << msg << std::endl;
} else if (severity == nvinfer1::ILogger::Severity::kERROR) {
FDERROR << msg << std::endl;
} else if (severity == nvinfer1::ILogger::Severity::kINTERNAL_ERROR) {
FDASSERT(false, "%s", msg);
}
}
};
struct ShapeRangeInfo {
explicit ShapeRangeInfo(const std::vector<int64_t>& new_shape) {
shape.assign(new_shape.begin(), new_shape.end());
min.resize(new_shape.size());
max.resize(new_shape.size());
is_static.resize(new_shape.size());
for (size_t i = 0; i < new_shape.size(); ++i) {
if (new_shape[i] > 0) {
min[i] = new_shape[i];
max[i] = new_shape[i];
is_static[i] = 1;
} else {
min[i] = -1;
max[i] = -1;
is_static[i] = 0;
}
}
}
std::string name;
std::vector<int64_t> shape;
std::vector<int64_t> min;
std::vector<int64_t> max;
std::vector<int64_t> opt;
std::vector<int8_t> is_static;
// return
// -1: new shape is inillegal
// 0 : new shape is able to inference
// 1 : new shape is out of range, need to update engine
int Update(const std::vector<int64_t>& new_shape);
int Update(const std::vector<int>& new_shape) {
std::vector<int64_t> new_shape_int64(new_shape.begin(), new_shape.end());
return Update(new_shape_int64);
}
friend std::ostream& operator<<(std::ostream& out,
const ShapeRangeInfo& info) {
out << "Input name: " << info.name << ", shape=" << info.shape
<< ", min=" << info.min << ", max=" << info.max << std::endl;
return out;
}
};
} // namespace fastdeploy