mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Update VERSION_NUMBER * Update paddle_inference.cmake * Delete docs directory * release new docs * update version number * add vision result doc * update version * fix dead link * fix vision * fix dead link * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_EN.md Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
1.7 KiB
1.7 KiB
Python Deployment
Make sure that FastDeploy is installed in the development environment. Refer to FastDeploy Installation to install the pre-built FastDeploy, or build and install according to your own needs.
This document uses the PaddleDetection target detection model PPYOLOE as an example to show an inference example on the CPU.
1. Get the Model and Test Image
import fastdeploy as fd
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url - "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")
2. Load Model
- More examples of models can be found inFastDeploy/examples
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file)
3. Get Prediction for Image Object Detection
import cv2
im = cv2.imread("000000014439.jpg")
result = model.predict(im)
print(result)
4. Visualize image prediction results
vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
After the visualization is executed, open vis_image.jpg
and the visualization effect is as follows: