mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (#9) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * first commit for yolor * for merge * Develop (#11) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Yolor (#16) * Develop (#11) (#12) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Develop (#13) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (#14) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com> * add is_dynamic for YOLO series (#22) * modify ppmatting backend and docs * modify ppmatting docs * fix the PPMatting size problem * fix LimitShort's log * retrigger ci * modify PPMatting docs * modify the way for dealing with LimitShort * add python comments for external models * modify resnet c++ comments * modify C++ comments for external models * modify python comments and add result class comments * fix comments compile error * modify result.h comments * first commit for dead links * first commit for dead links * fix docs deadlinks * fix docs deadlinks * fix examples deadlinks * fix examples deadlinks Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com>
80 lines
6.6 KiB
Markdown
80 lines
6.6 KiB
Markdown
[English](../en/quantize.md) | 简体中文
|
||
|
||
# 量化加速
|
||
量化是一种流行的模型压缩方法,量化后的模型拥有更小的体积和更快的推理速度.
|
||
FastDeploy基于PaddleSlim, 集成了一键模型量化的工具, 同时, FastDeploy支持部署量化后的模型, 帮助用户实现推理加速.
|
||
|
||
|
||
## FastDeploy 多个引擎和硬件支持量化模型部署
|
||
当前,FastDeploy中多个推理后端可以在不同硬件上支持量化模型的部署. 支持情况如下:
|
||
|
||
| 硬件/推理后端 | ONNX Runtime | Paddle Inference | TensorRT |
|
||
| :-----------| :-------- | :--------------- | :------- |
|
||
| CPU | 支持 | 支持 | |
|
||
| GPU | | | 支持 |
|
||
|
||
|
||
## 模型量化
|
||
|
||
### 量化方法
|
||
基于PaddleSlim, 目前FastDeploy提供的的量化方法有量化蒸馏训练和离线量化, 量化蒸馏训练通过模型训练来获得量化模型, 离线量化不需要模型训练即可完成模型的量化. FastDeploy 对两种方式产出的量化模型均能部署.
|
||
|
||
两种方法的主要对比如下表所示:
|
||
| 量化方法 | 量化过程耗时 | 量化模型精度 | 模型体积 | 推理速度 |
|
||
| :-----------| :--------| :-------| :------- | :------- |
|
||
| 离线量化 | 无需训练,耗时短 | 比量化蒸馏训练稍低 | 两者一致 | 两者一致 |
|
||
| 量化蒸馏训练 | 需要训练,耗时稍高 | 较未量化模型有少量损失 | 两者一致 |两者一致 |
|
||
|
||
### 用户使用FastDeploy一键模型量化工具来量化模型
|
||
Fastdeploy基于PaddleSlim, 为用户提供了一键模型量化的工具,请参考如下文档进行模型量化.
|
||
- [FastDeploy 一键模型量化](../../tools/auto_compression/)
|
||
当用户获得产出的量化模型之后,即可以使用FastDeploy来部署量化模型.
|
||
|
||
|
||
## 量化示例
|
||
目前, FastDeploy已支持的模型量化如下表所示:
|
||
|
||
### YOLO 系列
|
||
| 模型 |推理后端 |部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP | 量化方式 |
|
||
| ------------------- | -----------------|-----------| -------- |-------- |-------- | --------- |-------- |----- |
|
||
| [YOLOv5s](../../examples/vision/detection/yolov5/quantize/) | TensorRT | GPU | 8.79 | 5.17 | 1.70 | 37.6 | 36.6 | 量化蒸馏训练 |
|
||
| [YOLOv5s](../../examples/vision/detection/yolov5/quantize/) | ONNX Runtime | CPU | 176.34 | 92.95 | 1.90 | 37.6 | 33.1 |量化蒸馏训练 |
|
||
| [YOLOv5s](../../examples/vision/detection/yolov5/quantize/) | Paddle Inference | CPU | 217.05 | 133.31 | 1.63 |37.6 | 36.8 | 量化蒸馏训练 |
|
||
| [YOLOv6s](../../examples/vision/detection/yolov6/quantize/) | TensorRT | GPU | 8.60 | 5.16 | 1.67 | 42.5 | 40.6|量化蒸馏训练 |
|
||
| [YOLOv6s](../../examples/vision/detection/yolov6/quantize/) | ONNX Runtime | CPU | 338.60 | 128.58 | 2.60 |42.5| 36.1|量化蒸馏训练 |
|
||
| [YOLOv6s](../../examples/vision/detection/yolov6/quantize/) | Paddle Inference | CPU | 356.62 | 125.72 | 2.84 |42.5| 41.2|量化蒸馏训练 |
|
||
| [YOLOv7](../../examples/vision/detection/yolov7/quantize/) | TensorRT | GPU | 24.57 | 9.40 | 2.61 | 51.1| 50.8|量化蒸馏训练 |
|
||
| [YOLOv7](../../examples/vision/detection/yolov7/quantize/) | ONNX Runtime | CPU | 976.88 | 462.69 | 2.11 | 51.1 | 42.5|量化蒸馏训练 |
|
||
| [YOLOv7](../../examples/vision/detection/yolov7/quantize/) | Paddle Inference | CPU | 1022.55 | 490.87 | 2.08 |51.1 | 46.3|量化蒸馏训练 |
|
||
|
||
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
|
||
- 测试数据为COCO2017验证集中的图片.
|
||
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
|
||
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
|
||
|
||
|
||
### PaddleDetection系列
|
||
| 模型 |推理后端 |部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP |量化方式 |
|
||
| ------------------- | -----------------|-----------| -------- |-------- |-------- | --------- |-------- |----- |
|
||
| [ppyoloe_crn_l_300e_coco](../../examples/vision/detection/paddledetection/quantize ) | TensorRT | GPU | 24.52 | 11.53 | 2.13 | 51.4 | 50.7 | 量化蒸馏训练 |
|
||
| [ppyoloe_crn_l_300e_coco](../../examples/vision/detection/paddledetection/quantize) | ONNX Runtime | CPU | 1085.62 | 457.56 | 2.37 |51.4 | 50.0 |量化蒸馏训练 |
|
||
|
||
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
|
||
- 测试图片为COCO val2017中的图片.
|
||
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
|
||
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
|
||
|
||
|
||
### PaddleClas系列
|
||
| 模型 |推理后端 |部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 Top1 | INT8 Top1 |量化方式 |
|
||
| ------------------- | -----------------|-----------| -------- |-------- |-------- | --------- |-------- |----- |
|
||
| [ResNet50_vd](../../examples/vision/classification/paddleclas/quantize/) | ONNX Runtime | CPU | 77.20 | 40.08 | 1.93 | 79.12 | 78.87| 离线量化|
|
||
| [ResNet50_vd](../../examples/vision/classification/paddleclas/quantize/) | TensorRT | GPU | 3.70 | 1.80 | 2.06 | 79.12 | 79.06 | 离线量化 |
|
||
| [MobileNetV1_ssld](../../examples/vision/classification/paddleclas/quantize/) | ONNX Runtime | CPU | 30.99 | 10.24 | 3.03 |77.89 | 75.09 |离线量化 |
|
||
| [MobileNetV1_ssld](../../examples/vision/classification/paddleclas/quantize/) | TensorRT | GPU | 1.80 | 0.58 | 3.10 |77.89 | 76.86 | 离线量化 |
|
||
|
||
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
|
||
- 测试数据为ImageNet-2012验证集中的图片.
|
||
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
|
||
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
|