Files
FastDeploy/docs/en/quick_start/runtime/cpp.md
charl-u 1135d33dd7 [Doc]Add English version of documents in examples/ (#1042)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples
2023-01-06 09:35:12 +08:00

121 lines
4.3 KiB
Markdown

English | [中文](../../../cn/quick_start/runtime/cpp.md)
# C++ Inference
Please check out the FastDeploy C++ deployment library is already in your environment. You can refer to [FastDeploy Installation](../../build_and_install/) to install the pre-compiled FastDeploy, or customize your installation.
This document shows an inference sample on the CPU using the PaddleClas classification model MobileNetV2 as an example.
## 1. Obtaining the Model
```bash
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
tar xvf mobilenetv2.tgz
```
## 2. Backend Configuration
The following C++ code is saved as `infer_paddle_onnxruntime.cc`.
``` c++
#include "fastdeploy/runtime.h"
namespace fd = fastdeploy;
int main(int argc, char* argv[]) {
std::string model_file = "mobilenetv2/inference.pdmodel";
std::string params_file = "mobilenetv2/inference.pdiparams";
// setup option
fd::RuntimeOption runtime_option;
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
runtime_option.UseOrtBackend();
runtime_option.SetCpuThreadNum(12);
// init runtime
std::unique_ptr<fd::Runtime> runtime =
std::unique_ptr<fd::Runtime>(new fd::Runtime());
if (!runtime->Init(runtime_option)) {
std::cerr << "--- Init FastDeploy Runitme Failed! "
<< "\n--- Model: " << model_file << std::endl;
return -1;
} else {
std::cout << "--- Init FastDeploy Runitme Done! "
<< "\n--- Model: " << model_file << std::endl;
}
// init input tensor shape
fd::TensorInfo info = runtime->GetInputInfo(0);
info.shape = {1, 3, 224, 224};
std::vector<fd::FDTensor> input_tensors(1);
std::vector<fd::FDTensor> output_tensors(1);
std::vector<float> inputs_data;
inputs_data.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data.size(); ++i) {
inputs_data[i] = std::rand() % 1000 / 1000.0f;
}
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
//get input name
input_tensors[0].name = info.name;
runtime->Infer(input_tensors, &output_tensors);
output_tensors[0].PrintInfo();
return 0;
}
```
When loading is complete, you can get the following output information indicating the initialized backend and the hardware devices.
```
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
```
## 3. Prepare for CMakeLists.txt
FastDeploy contains several dependencies, it is more complicated to compile directly with `g++` or a compiler, so we recommend to use cmake to compile and configure. The sample configuration is as follows.
```cmake
PROJECT(runtime_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
# Specify path to the fastdeploy library after downloading and unpacking
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# Add FastDeploy dependency headers
include_directories(${FASTDEPLOY_INCS})
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
# Add FastDeploy dependency libraries
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
```
## 4. Compile executable program
Open a terminal, go to the directory where `infer_paddle_onnxruntime.cc` and `CMakeLists.txt` are located, and then run:
```bash
cd examples/runtime/cpp
mkdir build & cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
make -j
```
```fastdeploy_cpp_sdk``` is path to FastDeploy C++ deployment library.
After compiling, you can get your results by running:
```bash
./runtime_demo
```
If `error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`is reported, it means that the path to FastDeploy is not found. You can re-execute the program after adding the FastDeploy library path to the environment variable by running the following command.
```bash
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
```
This sample code is common on all platforms (Windows/Linux/Mac), but the compilation process is only supported on (Linux/Mac),while using msbuild to compile on Windows. Please refer to [FastDeploy C++ SDK on Windows](../../faq/use_sdk_on_windows.md).
## Other Documents
- [Runtime demos on different backends](../../../../examples/runtime/README.md)
- [Switching hardware and backend for model inference](../../faq/how_to_change_backend.md)