mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
81 lines
3.4 KiB
Markdown
81 lines
3.4 KiB
Markdown
# PaddleDetection C++部署示例
|
||
|
||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN/YOLOv5/YOLOv6/YOLOv7/RTMDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||
|
||
```bash
|
||
以ppyoloe为例进行推理部署
|
||
|
||
mkdir build
|
||
cd build
|
||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||
make -j
|
||
|
||
# 下载PPYOLOE模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||
|
||
|
||
# CPU推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
|
||
# GPU推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
||
# GPU上TensorRT推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
||
```
|
||
|
||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## PaddleDetection C++接口
|
||
|
||
### 模型类
|
||
|
||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||
```c++
|
||
fastdeploy::vision::detection::PPYOLOE(
|
||
const string& model_file,
|
||
const string& params_file,
|
||
const string& config_file
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||
```
|
||
|
||
PaddleDetection PPYOLOE模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 配置文件路径,即PaddleDetection导出的部署yaml文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为PADDLE格式
|
||
|
||
#### Predict函数
|
||
|
||
> ```c++
|
||
> PPYOLOE::Predict(cv::Mat* im, DetectionResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|