mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* bind success * bind success fix * FDMat pybind, ResizeByShort pybind * FDMat pybind, ResizeByShort pybind, remove initialized_ * override BindProcessorManager::Run in python is available * PyProcessorManager done * vision_pybind fix * manager.py fix * add tutorials * remove Apply() bind * remove Apply() bind and fix * fix reviewed problem * fix reviewed problem * fix reviewed problem readme * fix reviewed problem readme etc * apply return outputs * nits * update readme * fix FDMatbatch * add op pybind: CenterCrop, Pad * add op overload for pass FDMatBatch --------- Co-authored-by: Wang Xinyu <shaywxy@gmail.com>
43 lines
1.3 KiB
Markdown
43 lines
1.3 KiB
Markdown
中文 | [English](README.md)
|
||
# 多硬件图像处理库
|
||
|
||
多硬件图像处理库(Vision Processor)可用于实现模型的预处理、后处理等图像操作,底层封装了多个第三方图像处理库,包括:
|
||
- OpenCV,用于通用CPU图像处理
|
||
- FlyCV,主要针对ARM CPU加速
|
||
- CV-CUDA,用于NVIDIA GPU
|
||
|
||
## C++
|
||
|
||
待编写
|
||
|
||
## Python
|
||
|
||
Python API目前支持的算子如下:
|
||
|
||
- ResizeByShort
|
||
- NormalizeAndPermute
|
||
|
||
用户可通过继承PyProcessorManager类,实现自己的图像处理模块。基类PyProcessorManager实现了GPU内存管理、CUDA stream管理等,用户仅需要实现apply()函数,在其中调用多硬件图像处理库中的算子、实现处理逻辑即可,具体实现可参考示例代码。
|
||
|
||
### 示例代码
|
||
|
||
- [Python示例](python)
|
||
|
||
### CV-CUDA与OpenCV性能对比
|
||
|
||
CPU: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
|
||
|
||
GPU: T4
|
||
|
||
CUDA: 11.6
|
||
|
||
Processing logic: Resize -> NormalizeAndPermute
|
||
|
||
Warmup 100 rounds,tested 1000 rounds and get avg. latency.
|
||
|
||
| Input Image Shape | Target shape | Batch Size | OpenCV | CV-CUDA | Gain |
|
||
| ----------- | -- | ---------- | ------- | ------ | ------ |
|
||
| 1920x1080 | 640x360 | 1 | 1.1572ms | 0.9067ms | 16.44% |
|
||
| 1280x720 | 640x360 | 1 | 2.7551ms | 0.5296ms | 80.78% |
|
||
| 360x240 | 640x360 | 1 | 3.3450ms | 0.2421ms | 92.76% |
|