mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-19 06:54:41 +08:00

* Update README_CN.md 之前的readme cn复制错了,导致存在死链 * Update README_CN.md * Update README_CN.md * Update README.md * Update README.md * Update README.md * Update README_CN.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update RNN.md * Update RNN_CN.md * Update WebDemo.md * Update WebDemo_CN.md * Update install_rknn_toolkit2.md * Update export.md * Update use_cpp_sdk_on_android.md * Update README.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_हिन्दी.md * Update README_日本語.md * Update README_한국인.md * Update README_日本語.md * Update README_CN.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update README.md * Update README_CN.md * Update README_CN.md * Update README_CN.md * Update README_CN.md
94 lines
4.4 KiB
Markdown
94 lines
4.4 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# PaddleClas Service Deployment Example
|
|
|
|
Before the service deployment, please confirm
|
|
|
|
- 1. Refer to [FastDeploy Service Deployment](../../../../../serving/README.md) for software and hardware environment requirements and image pull commands.
|
|
|
|
|
|
## Start the Service
|
|
|
|
```bash
|
|
# Download the example code for deployment
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd FastDeploy/examples/vision/classification/paddleclas/serving
|
|
|
|
# Download ResNet50_vd model files and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
|
tar -xvf ResNet50_vd_infer.tgz
|
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
|
|
|
# Put the configuration file into the preprocessing directory
|
|
mv ResNet50_vd_infer/inference_cls.yaml models/preprocess/1/inference_cls.yaml
|
|
|
|
# Place the model under models/runtime/1 and rename them to model.pdmodel和model.pdiparams
|
|
mv ResNet50_vd_infer/inference.pdmodel models/runtime/1/model.pdmodel
|
|
mv ResNet50_vd_infer/inference.pdiparams models/runtime/1/model.pdiparams
|
|
|
|
# Pull the fastdeploy image (x.y.z represent the image version. Refer to the serving document to replace them with numbers)
|
|
# GPU image
|
|
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
|
|
# CPU image
|
|
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-cpu-only-21.10
|
|
|
|
# Run the container named fd_serving and mount it in the /serving directory of the container
|
|
nvidia-docker run -it --net=host --name fd_serving -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
|
|
|
|
# Start the service (The CUDA_VISIBLE_DEVICES environment variable is not set, which entitles the scheduling authority of all GPU cards)
|
|
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models --backend-config=python,shm-default-byte-size=10485760
|
|
```
|
|
>> **Attention**:
|
|
|
|
>> To pull images from other hardware, refer to [Service Deployment Master Document](../../../../../serving/README.md)
|
|
|
|
>> If "Address already in use" appears when running fastdeployserver to start the service, use `--grpc-port` to specify the port number and change the request port number in the client demo.
|
|
|
|
>> Other startup parameters can be checked by fastdeployserver --help
|
|
|
|
Successful service start brings the following output:
|
|
```
|
|
......
|
|
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
|
|
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
|
|
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
|
|
```
|
|
|
|
|
|
## Client Request
|
|
|
|
Execute the following command in the physical machine to send the grpc request and output the result
|
|
```
|
|
# Download test images
|
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
|
|
|
# Install client dependencies
|
|
python3 -m pip install tritonclient\[all\]
|
|
|
|
# Send the request
|
|
python3 paddlecls_grpc_client.py
|
|
```
|
|
|
|
The result is returned in json format and printed after sending the request:
|
|
```
|
|
output_name: CLAS_RESULT
|
|
{'label_ids': [153], 'scores': [0.6862289905548096]}
|
|
```
|
|
|
|
## Configuration Change
|
|
|
|
The current default configuration runs the TensorRT engine on GPU. If you want to run it on CPU or other inference engines, please modify the configuration in `models/runtime/config.pbtxt`. Refer to [Configuration Document](../../../../../serving/docs/EN/model_configuration-en.md) for more information.
|
|
|
|
## Use VisualDL for serving deployment visualization
|
|
|
|
You can use VisualDL for [serving deployment visualization](../../../../../serving/docs/EN/vdl_management-en.md) , the above model preparation, deployment, configuration modification and client request operations can all be performed based on VisualDL.
|
|
|
|
The serving deployment of PaddleClas by VisualDL only needs the following three steps:
|
|
```text
|
|
1. Load the model repository: ./vision/classification/paddleclas/serving/models
|
|
2. Download the model resource file: click the runtime model, click the version number 1 to add the pre-training model, and select the image classification model ResNet50_vd to download.
|
|
3. Start the service: Click the "launch server" button and input the launch parameters.
|
|
```
|
|
<p align="center">
|
|
<img src="https://user-images.githubusercontent.com/22424850/211708702-828d8ad8-4e85-457f-9c62-12f53fc81853.gif" width="100%"/>
|
|
</p>
|