luukunn aebe12a58d
Some checks are pending
CE Compile Job / ce_job_pre_check (push) Waiting to run
CE Compile Job / print_ce_job_pre_check_outputs (push) Blocked by required conditions
CE Compile Job / FD-Clone-Linux (push) Blocked by required conditions
CE Compile Job / Show Code Archive Output (push) Blocked by required conditions
CE Compile Job / BUILD_SM8090 (push) Blocked by required conditions
CE Compile Job / BUILD_SM8689 (push) Blocked by required conditions
CE Compile Job / CE_UPLOAD (push) Blocked by required conditions
[fix]update apply_chat_template (#4249)
* [fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4086)

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* add completion_token_ids

* add logger

* fix reasoning_max_tokens ParameterError

* add unittest

* add unittest

* add unittest

* add unittest

* add unittest

* add unit test

* fix

* [fix]update apply_chat_template (#4137)

* update apply_chat_template

* fix unittest

* fix unittest

* fix

* fix

* fix unit test

* fix

* fix unit test

* add unit test
2025-09-25 16:41:56 +08:00
2025-09-09 10:23:51 +08:00
2025-09-09 10:23:51 +08:00
2025-08-28 14:17:54 +08:00
2025-09-09 10:23:51 +08:00
2025-08-31 21:31:12 +08:00

English | 简体中文

PaddlePaddle%2FFastDeploy | Trendshift
Installation | Quick Start | Supported Models


FastDeploy : Inference and Deployment Toolkit for LLMs and VLMs based on PaddlePaddle

News

[2025-09] 🔥 FastDeploy v2.2 is newly released! It now offers compatibility with models in the HuggingFace ecosystem, has further optimized performance, and newly adds support for baidu/ERNIE-21B-A3B-Thinking!

[2025-08] 🔥 Released FastDeploy v2.1: A brand-new KV Cache scheduling strategy has been introduced, and expanded support for PD separation and CUDA Graph across more models. Enhanced hardware support has been added for platforms like Kunlun and Hygon, along with comprehensive optimizations to improve the performance of both the service and inference engine.

[2025-07] The FastDeploy 2.0 Inference Deployment Challenge is now live! Complete the inference deployment task for the ERNIE 4.5 series open-source models to win official FastDeploy 2.0 merch and generous prizes! 🎁 You're welcome to try it out and share your feedback! 📌Sign up here 📌Event details

[2025-06] 🔥 Released FastDeploy v2.0: Supports inference and deployment for ERNIE 4.5. Furthermore, we open-source an industrial-grade PD disaggregation with context caching, dynamic role switching for effective resource utilization to further enhance inference performance for MoE models.

About

FastDeploy is an inference and deployment toolkit for large language models and visual language models based on PaddlePaddle. It delivers production-ready, out-of-the-box deployment solutions with core acceleration technologies:

  • 🚀 Load-Balanced PD Disaggregation: Industrial-grade solution featuring context caching and dynamic instance role switching. Optimizes resource utilization while balancing SLO compliance and throughput.
  • 🔄 Unified KV Cache Transmission: Lightweight high-performance transport library with intelligent NVLink/RDMA selection.
  • 🤝 OpenAI API Server and vLLM Compatible: One-command deployment with vLLM interface compatibility.
  • 🧮 Comprehensive Quantization Format Support: W8A16, W8A8, W4A16, W4A8, W2A16, FP8, and more.
  • Advanced Acceleration Techniques: Speculative decoding, Multi-Token Prediction (MTP) and Chunked Prefill.
  • 🖥️ Multi-Hardware Support: NVIDIA GPU, Kunlunxin XPU, Hygon DCU, Ascend NPU, Iluvatar GPU, Enflame GCU, MetaX GPU etc.

Requirements

  • OS: Linux
  • Python: 3.10 ~ 3.12

Installation

FastDeploy supports inference deployment on NVIDIA GPUs, Kunlunxin XPUs, Iluvatar GPUs, Enflame GCUs, Hygon DCUs and other hardware. For detailed installation instructions:

Note: We are actively working on expanding hardware support. Additional hardware platforms including Ascend NPU are currently under development and testing. Stay tuned for updates!

Get Started

Learn how to use FastDeploy through our documentation:

Supported Models

Learn how to download models, enable using the torch format, and more:

Advanced Usage

Acknowledgement

FastDeploy is licensed under the Apache-2.0 open-source license. During development, portions of vLLM code were referenced and incorporated to maintain interface compatibility, for which we express our gratitude.

Description
️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
Readme Apache-2.0 152 MiB
Languages
Python 45%
C++ 28.8%
Cuda 25.4%
Shell 0.5%
C 0.2%
Other 0.1%