Files
FastDeploy/docs/online_serving/README.md
李泳桦 eca8fc7ca6 [feat] extra parameters are all passed directly via http payload now, or in extra_body if using openai client (#3077)
* [feat] extra parameters are all passed directly via http payload now, or in extra_body if using openai client

* [fix] delete ci test case for enable_thinking

* [fix] add reasoning_parser when server starts

* [doc] update docs related to metadata

* [fix] fix ci consistency test error with reasoning parser

* [fix] cancel enable_thinking default value
2025-07-30 19:25:39 +08:00

130 lines
5.0 KiB
Markdown

# OpenAI Protocol-Compatible API Server
FastDeploy provides a service-oriented deployment solution that is compatible with the OpenAI protocol. Users can quickly deploy it using the following command:
```bash
python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-0.3B-Paddle \
--port 8188 --tensor-parallel-size 8 \
--max-model-len 32768
```
To enable log probability output, simply deploy with the following command:
```bash
python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-0.3B-Paddle \
--port 8188 --tensor-parallel-size 8 \
--max-model-len 32768 \
--enable-logprob
```
For more usage methods of the command line during service deployment, refer to [Parameter Descriptions](../parameters.md).
## Sending User Requests
The FastDeploy interface is compatible with the OpenAI protocol, allowing user requests to be sent directly using OpenAI's request method.
Here is an example of sending a user request using the curl command:
```bash
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
```
Here's an example curl command demonstrating how to include the logprobs parameter in a user request:
```bash
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}, "logprobs": true, "top_logprobs": 5
]
}'
```
Here is an example of sending a user request using a Python script:
```python
import openai
host = "0.0.0.0"
port = "8170"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.chat.completions.create(
model="null",
messages=[
{"role": "system", "content": "I'm a helpful AI assistant."},
{"role": "user", "content": "Rewrite Li Bai's 'Quiet Night Thought' as a modern poem"},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
```
For a description of the OpenAI protocol, refer to the document [OpenAI Chat Completion API](https://platform.openai.com/docs/api-reference/chat/create).
## Parameter Differences
### Request Parameter Differences
The differences in request parameters between FastDeploy and the OpenAI protocol are as follows. Other request parameters will be ignored:
- `prompt` (supported only in the `v1/completions` interface)
- `messages` (supported only in the `v1/chat/completions` interface)
- `logprobs`: Optional[bool] = False (supported only in the `v1/chat/completions` interface)
- `top_logprobs`: Optional[int] = None (supported only in the `v1/chat/completions` interface. An integer between 0 and 20,logprobs must be set to true if this parameter is used)
- `frequency_penalty`: Optional[float] = 0.0
- `max_tokens`: Optional[int] = 16
- `presence_penalty`: Optional[float] = 0.0
- `stream`: Optional[bool] = False
- `stream_options`: Optional[StreamOptions] = None
- `temperature`: Optional[float] = None
- `top_p`: Optional[float] = None
- `extra_body`: Optional[dict] = None (supported only in `v1/chat/completions` for configuring additional parameters, e.g., `extra_body={"enable_thinking": True}`)
- `min_tokens`: Optional[int] = 1 (minimum number of tokens generated)
- `reasoning_max_tokens`: Optional[int] = None (maximum number of tokens for reasoning content, defaults to the same as `max_tokens`)
- `enable_thinking`: Optional[bool] = True (whether to enable reasoning for models that support deep thinking)
- `repetition_penalty`: Optional[float] = None (coefficient for directly penalizing repeated token generation (>1 penalizes repetition, <1 encourages repetition))
- `return_token_ids`: Optional[bool] = False: (whether to return token ids as a list)
> Note: For multimodal models, since the reasoning chain is enabled by default, resulting in overly long outputs, `max_tokens` can be set to the model's maximum output length or the default value can be used.
### Return Field Differences
The additional return fields added by FastDeploy are as follows:
- `arrival_time`: Returns the cumulative time taken for all tokens
- `reasoning_content`: The returned result of the reasoning chain
- `prompt_token_ids`: The token id list of the prompt
- `completion_token_ids`: The token id list of the completion
Overview of return parameters:
```python
ChatCompletionStreamResponse:
id: str
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
ChatCompletionResponseStreamChoice:
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
arrival_time: Optional[float] = None
DeltaMessage:
role: Optional[str] = None
content: Optional[str] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
```