Files
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

4.2 KiB
Executable File
Raw Permalink Blame History

English | 简体中文

PP-TinyPose Python Deployment Example

Before deployment, two steps require confirmation

This directory provides the Multi-person keypoint detection in a single image example that pptinypose_infer.py fast finishes the deployment of PP-TinyPose on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

Attention: single model currently only supports single-person keypoint detection in a single image. Therefore, the input image should contain one person only or should be cropped. For multi-person keypoint detection, refer to PP-TinyPose Pipeline

# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/python

# Download PP-TinyPose model files and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg

# CPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu
# GPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu
# TensorRT inference on GPUAttention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True
# KunlunXin XPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device kunlunxin

The visualized result after running is as follows

PP-TinyPose Python Interface

fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)

PP-TinyPose model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to Model Export for more information

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • config_file(str): Inference deployment configuration file
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. Paddle format by default

predict function

PPTinyPose.predict(input_image)

Model prediction interface. Input images and output detection results.

Parameter

  • input_image(np.ndarray): Input data in HWC or BGR format

Return

Return fastdeploy.vision.KeyPointDetectionResult structure. Refer to Vision Model Prediction Results for the description of the structure.

Class Member Property

Post-processing Parameter

Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results

  • use_dark(bool): • Whether to use DARK for post-processing. Refer to Reference Paper

Other Documents