mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 05:12:24 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
106 lines
3.4 KiB
C++
106 lines
3.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void CpuInfer(const std::string& model_file, const std::string& image_file) {
|
|
auto model = fastdeploy::vision::detection::FastestDet(model_file);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
void GpuInfer(const std::string& model_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
void TrtInfer(const std::string& model_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
option.SetTrtInputShape("images", {1, 3, 352, 352});
|
|
auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
|
"e.g ./infer_model ./FastestDet.onnx ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (std::atoi(argv[3]) == 0) {
|
|
CpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 1) {
|
|
GpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 2) {
|
|
TrtInfer(argv[1], argv[2]);
|
|
}
|
|
return 0;
|
|
}
|