Files
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..

English | 简体中文

FastestDet C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of FastestDet on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation

Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory.

mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-1.0.3.tgz
tar xvf fastdeploy-linux-x64-1.0.3.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-1.0.3
make -j

# Download the official converted FastestDet model files and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg


# CPU inference
./infer_demo FastestDet.onnx 000000014439.jpg 0
# GPU inference
./infer_demo FastestDet.onnx 000000014439.jpg 1
# TensorRT inference on GPU
./infer_demo FastestDet.onnx 000000014439.jpg 2

The visualized result after running is as follows

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

FastestDet C++ Interface

FastestDet Class

fastdeploy::vision::detection::FastestDet(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

FastestDet model loading and initialization, among which model_file is the exported ONNX model format

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. Only passing an empty string when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

Predict Function

FastestDet::Predict(cv::Mat* im, DetectionResult* result,
                float conf_threshold = 0.65,
                float nms_iou_threshold = 0.45)

Model prediction interface. Input images and output detection results.

Parameter

  • im: Input images in HWC or BGR format
  • result: Detection results, including detection box and confidence of each box. Refer to Vision Model Prediction Results for DetectionResult
  • conf_threshold: Filtering threshold of detection box confidence
  • nms_iou_threshold: iou threshold during NMS processing

Class Member Variable

Pre-processing Parameter

Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results

  • size(vector<int>): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [352, 352]