
* Create README_CN.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Update README.md * Update and rename README_en.md to README_CN.md * Update WebDemo.md * Update and rename WebDemo_en.md to WebDemo_CN.md * Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md * Update DEVELOPMENT_CN.md * Update DEVELOPMENT.md * Update RNN.md * Update and rename RNN_EN.md to RNN_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update export.md * Update and rename export_EN.md to export_CN.md * Update README.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update kunlunxin.md * Update classification_result.md * Update classification_result_EN.md * Rename classification_result_EN.md to classification_result_CN.md * Update detection_result.md * Update and rename detection_result_EN.md to detection_result_CN.md * Update face_alignment_result.md * Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md * Update face_detection_result.md * Update and rename face_detection_result_EN.md to face_detection_result_CN.md * Update face_recognition_result.md * Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md * Update headpose_result.md * Update and rename headpose_result_EN.md to headpose_result_CN.md * Update keypointdetection_result.md * Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md * Update matting_result.md * Update and rename matting_result_EN.md to matting_result_CN.md * Update mot_result.md * Update and rename mot_result_EN.md to mot_result_CN.md * Update ocr_result.md * Update and rename ocr_result_EN.md to ocr_result_CN.md * Update segmentation_result.md * Update and rename segmentation_result_EN.md to segmentation_result_CN.md * Update README.md * Update README.md * Update quantize.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md
3.1 KiB
English | 简体中文
Front-end AI application
The development of artificial intelligence technology has led to industrial upgrading in the fields of computer vision(CV) and natural language processing(NLP). In addition, the deployment of AI models in browsers to achieve front-end intelligence has already provided good basic conditions with the steady increase in computing power on PCs and mobile devices, iterative updates of model compression technologies, and the continuous emergence of various innovative needs. In response to the difficulty of deploying AI deep learning models on the front-end, Baidu has open-sourced the Paddle.js front-end deep learning model deployment framework, which can easily deploy deep learning models into front-end projects.
Introduction of Paddle.js
Paddle.js is a web sub-project of Baidu PaddlePaddle
, an open source deep learning framework running in the browser. Paddle.js
can load the deep learning model trained by PaddlePaddle
, and convert it into a browser-friendly model through the model conversion tool paddlejs-converter
of Paddle.js
, which is easy to use for online reasoning and prediction. Paddle.js
supports running in browsers of WebGL/WebGPU/WebAssembly
, and can also run in the environment of Baidu applet and WeChat applet.
Finally, we can launch AI functions in front-end application scenarios such as browsers and mini-program using Paddle.js
, including but not limited to AI capabilities such as object detection, image segmentation, OCR, and item classification.
Web Demo
Refer to this document for steps to run computer vision demo in the browser.
demo | web demo directory | visualization |
---|---|---|
object detection | ScrewDetection、FaceDetection | ![]() |
human segmentation | HumanSeg | ![]() |
classification | GestureRecognition、ItemIdentification | ![]() |
OCR | TextDetection、TextRecognition | ![]() |
Wechat Mini-program
Run the official demo reference in the WeChat mini-program document
Name | Directory |
---|---|
OCR Text Detection | ocrdetecXcx |
OCR Text Recognition | ocrXcx |
object detection | coming soon |
Image segmentation | coming soon |
Item Category | coming soon |
Contributor
Thanks to Paddle Paddle Developer Expert (PPDE) Chen Qianhe (github: chenqianhe) for the Web demo, mini-program.