mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md
1.8 KiB
1.8 KiB
English | 中文
Python Deployment
Make sure that FastDeploy is installed in the development environment. Refer to FastDeploy Installation to install the pre-built FastDeploy, or build and install according to your own needs.
This document uses the PaddleDetection target detection model PPYOLOE as an example to show an inference example on the CPU.
1. Get the Model and Test Image
import fastdeploy as fd
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url = "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")
2. Load Model
- More examples of models can be found inFastDeploy/examples
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file)
3. Get Prediction for Image Object Detection
import cv2
im = cv2.imread("000000014439.jpg")
result = model.predict(im)
print(result)
4. Visualize image prediction results
vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
After the visualization is executed, open vis_image.jpg
and the visualization effect is as follows: