Files
FastDeploy/docs/en/quick_start/models/python.md
charl-u 02eab973ce [Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md
2022-12-22 18:15:01 +08:00

1.8 KiB
Raw Permalink Blame History

English | 中文

Python Deployment

Make sure that FastDeploy is installed in the development environment. Refer to FastDeploy Installation to install the pre-built FastDeploy, or build and install according to your own needs.

This document uses the PaddleDetection target detection model PPYOLOE as an example to show an inference example on the CPU.

1. Get the Model and Test Image

import fastdeploy as fd

model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url = "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")

2. Load Model

model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file)

3. Get Prediction for Image Object Detection

import cv2
im = cv2.imread("000000014439.jpg")

result = model.predict(im)
print(result)

4. Visualize image prediction results

vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)

After the visualization is executed, open vis_image.jpg and the visualization effect is as follows

other documents