mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
87 lines
2.9 KiB
Markdown
87 lines
2.9 KiB
Markdown
# ERNIE-4.5模型
|
||
|
||
本文档讲解如何部署ERNIE-4.5模型,在开始部署前,请确保你的硬件环境满足如下条件:
|
||
|
||
- GPU驱动 >= 535
|
||
- CUDA >= 12.3
|
||
- CUDNN >= 9.5
|
||
- Linux X86_64
|
||
- Python >= 3.10
|
||
- 80G A/H 4卡
|
||
|
||
安装FastDeploy方式参考[安装文档](./installation/README.md)。
|
||
|
||
## 准备模型
|
||
部署时指定 ```--model baidu/ERNIE-4.5-300B-A47B-Paddle``` 即可自动从AIStudio下载模型,并支持断点续传。你也可以自行从不同渠道下载模型,需要注意的是FastDeploy依赖Paddle格式的模型,更多说明参考[支持模型列表](../supported_models.md)。
|
||
|
||
## 启动服务
|
||
|
||
>💡 **注意**: 由于模型参数量为300B-A47B,在80G * 8卡的机器上,需指定 ```--quantization wint4``` (wint8也可部署,其中wint4 4卡即可部署,wint8则需要8卡)。
|
||
|
||
执行如下命令,启动服务,其中启动命令配置方式参考[参数说明](../parameters.md)。
|
||
|
||
```shell
|
||
export ENABLE_V1_KVCACHE_SCHEDULER=1
|
||
python -m fastdeploy.entrypoints.openai.api_server \
|
||
--model baidu/ERNIE-4.5-300B-A47B-Paddle \
|
||
--port 8180 --engine-worker-queue-port 8181 \
|
||
--cache-queue-port 8182 --metrics-port 8182 \
|
||
--tensor-parallel-size 8 \
|
||
--quantization wint4 \
|
||
--max-model-len 32768 \
|
||
--max-num-seqs 32
|
||
```
|
||
|
||
## 用户发起服务请求
|
||
执行启动服务指令后,当终端打印如下信息,说明服务已经启动成功。
|
||
|
||
```shell
|
||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||
INFO: Started server process [13909]
|
||
INFO: Waiting for application startup.
|
||
INFO: Application startup complete.
|
||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||
```
|
||
|
||
FastDeploy提供服务探活接口,用以判断服务的启动状态,执行如下命令返回 ```HTTP/1.1 200 OK``` 即表示服务启动成功。
|
||
|
||
```shell
|
||
curl -i http://0.0.0.0:8180/health
|
||
```
|
||
|
||
通过如下命令进行服务请求。
|
||
|
||
```shell
|
||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "把李白的静夜思改写为现代诗"}
|
||
]
|
||
}'
|
||
```
|
||
|
||
FastDeploy服务接口兼容OpenAI协议,可以通过如下Python代码发起服务请求。
|
||
|
||
```python
|
||
import openai
|
||
host = "0.0.0.0"
|
||
port = "8180"
|
||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||
|
||
response = client.chat.completions.create(
|
||
model="null",
|
||
messages=[
|
||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||
{"role": "user", "content": "把李白的静夜思改写为现代诗"},
|
||
],
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
if chunk.choices[0].delta:
|
||
print(chunk.choices[0].delta.content, end='')
|
||
print('\n')
|
||
```
|