mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-02 15:22:24 +08:00

* add chat_template_kwagrs and update params docs * add chat_template_kwagrs and update params docs * update enable_thinking * pre-commit * update test case --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
84 lines
2.9 KiB
Markdown
84 lines
2.9 KiB
Markdown
# 思考链内容
|
|
|
|
思考模型在输出中返回 `reasoning_content` 字段,表示思考链内容,即得出最终结论的思考步骤.
|
|
|
|
##目前支持思考链的模型
|
|
| 模型名称 | 解析器名称 | 默认开启思考链 |
|
|
|---------------|-------------|---------|
|
|
| baidu/ERNIE-4.5-VL-424B-A47B-Paddle | ernie-45-vl | ✓ |
|
|
| baidu/ERNIE-4.5-VL-28B-A3B-Paddle | ernie-45-vl | ✓ |
|
|
|
|
思考模型需要指定解析器,以便于对思考内容进行解析. 通过 `"enable_thinking": false` 参数可以关闭模型思考模式.
|
|
|
|
可以支持思考模式开关的接口:
|
|
1. OpenAI 服务中 `/v1/chat/completions` 请求.
|
|
2. OpenAI Python客户端中 `/v1/chat/completions` 请求.
|
|
3. Offline 接口中 `llm.chat`请求.
|
|
|
|
同时在思考模型中,支持通过 `reasoning_max_tokens` 控制思考内容的长度,在请求中添加 `"reasoning_max_tokens": 1024` 即可。
|
|
|
|
## 快速使用
|
|
在启动模型服务时, 通过 `--reasoning-parser` 参数指定解析器名称.
|
|
该解析器会解析思考模型的输出, 提取 `reasoning_content` 字段.
|
|
|
|
```bash
|
|
python -m fastdeploy.entrypoints.openai.api_server \
|
|
--model /path/to/your/model \
|
|
--enable-mm \
|
|
--tensor-parallel-size 8 \
|
|
--port 8192 \
|
|
--quantization wint4 \
|
|
--reasoning-parser ernie-45-vl
|
|
```
|
|
|
|
接下来, 向模型发送 `chat completion` 请求
|
|
|
|
```bash
|
|
curl -X POST "http://0.0.0.0:8192/v1/chat/completions" \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"messages": [
|
|
{"role": "user", "content": [
|
|
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
|
|
{"type": "text", "text": "图中的文物属于哪个年代"}
|
|
]}
|
|
],
|
|
"chat_template_kwargs":{"enable_thinking": true},
|
|
"reasoning_max_tokens": 1024
|
|
}'
|
|
|
|
```
|
|
|
|
字段 `reasoning_content` 包含得出最终结论的思考步骤,而 `content` 字段包含最终结论。
|
|
|
|
### 流式会话
|
|
在流式会话中, `reasoning_content` 字段会可以在 `chat completion response chunks` 中的 `delta` 中获取
|
|
|
|
```python
|
|
from openai import OpenAI
|
|
# Set OpenAI's API key and API base to use vLLM's API server.
|
|
openai_api_key = "EMPTY"
|
|
openai_api_base = "http://localhost:8192/v1"
|
|
client = OpenAI(
|
|
api_key=openai_api_key,
|
|
base_url=openai_api_base,
|
|
)
|
|
chat_response = client.chat.completions.create(
|
|
messages=[
|
|
{"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
|
|
{"type": "text", "text": "图中的文物属于哪个年代"}]}
|
|
],
|
|
model="vl",
|
|
stream=True,
|
|
extra_body={
|
|
"chat_template_kwargs":{"enable_thinking": True},
|
|
"reasoning_max_tokens": 1024
|
|
}
|
|
)
|
|
for chunk in chat_response:
|
|
if chunk.choices[0].delta is not None:
|
|
print(chunk.choices[0].delta, end='')
|
|
print("\n")
|
|
|
|
```
|