Compare commits

...

97 Commits

Author SHA1 Message Date
chenjian
b272ca9f83 [Bug fix] Fix bug for supporting max think len (#4267)
* fix bug for supporting max thinking lens

* fix max_think_lens
2025-09-25 19:08:38 +08:00
chenjian
db653644ad Fix fetch request exceed max block num (#4257)
* fix fetch

* fix fetch
2025-09-25 00:57:45 +08:00
chenjian
4aa057f28d fix fetch (#4253) 2025-09-24 22:37:47 +08:00
K11OntheBoat
05b7800d80 Support limit thinking lengths (#4244)
Co-authored-by: K11OntheBoat <“ruianmaidanglao@163.com”>
2025-09-24 17:30:53 +08:00
chenjian
12043fc476 fix bug for trigger preempted (#4228) 2025-09-23 20:34:51 +08:00
chenjian
acecd5bebe fix for pd decode not enough block (#4224) 2025-09-23 18:01:25 +08:00
chenjian
918ccdb123 [Feature] Support pd ep deployment with yiyan adapter (#4029)
* [Feature] Support mixed deployment with yiyan adapter in release2.2

* fix metrics

* add unit test

* add unit test

* add unit test

* Support pd ep deployment with yiyan adapter

* Support pd ep deployment with yiyan adapter

* refactor cache messager

* support scheduler v1 in PD

* suppport pd v1 + chunk prefill

* suppport pd v1 + chunk prefill

* add eplb

* support eplb

* support eplb

* support eplb

* support v1

* fix

* fix

* fix bug

* remove eplb support

* support prefix cache in P

* fix bug

* fix bug

* support one stop in V1

* fix bug

* fix ci

* fix ci

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-22 16:41:38 +08:00
Echo-Nie
9845f0d010 【Hackathon 9th No.30】add test_tritonmoe_preprocess (#3891)
* add test_tritonmoe_preprocess

* add value check

* del test_support_all...
2025-09-22 15:31:32 +08:00
co63oc
c4830ef24c fix typos (#4176)
* fix typos

* fix
2025-09-22 14:27:17 +08:00
Divano
0b62648924 test xly ci 2025-09-22 14:13:00 +08:00
lizexu123
c86945ef49 [Feature] support pool (#3827)
* support pool

* update pooling

* add pooler_config and check

* update

* support AutoWeightsLoader load weight

* fix

* update

* delete print

* update pre-commit

* fix

* fix xpu

* fix ModelRegistry->model_registry

* fix Copilot review

* fix pooler.py

* delete StepPooler

* fix abstract

* fix default_loader_v1

* fix Pre Commit

* support torch qwen3 dense

* add test and fix torch-qwen

* fix

* fix

* adapter ci:

* fix review

* fix pooling_params.py

* fix

* fix tasks.py 2025

* fix print and logger

* Modefy ModelRegistry and delete AutoWeightsLoader

* fix logger

* fix test_embedding

* fix ci bug

* ernie4_5 model_registry

* fix test

* support Qwen3-Embedding-0.6B tp=1 load

* fix extra code

* fix

* delete fix vocab_size

* delete prepare_params_dict

* fix:
2025-09-22 14:09:09 +08:00
chen
da74a5f0b3 fix glm all_reduce tp group (#4187) 2025-09-22 10:56:55 +08:00
co63oc
718f32a6b0 fix nul (#4191) 2025-09-22 10:55:33 +08:00
Lucas
5c33be5a7d [TEST] init first commit (#4192) 2025-09-22 10:51:27 +08:00
RichardWooSJTU
91912cc2e1 fix t2i (#4163)
Some checks failed
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
CE Compile Job / ce_job_pre_check (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Co-authored-by: Yuanle Liu <yuanlehome@163.com>
2025-09-19 18:07:13 +08:00
Echo-Nie
cc6e14d2ec 【Hackathon 9th No.46】add test_fused_rotary_position_encoding (#3848)
* add test_fused_rotary_position_encoding

* 添加版权

* fix according to the review
2025-09-19 17:50:19 +08:00
YuanRisheng
24180fba0a [FDConfig]Remove splitwise_role and engine_worker_queue_port in FDConfig (#4147)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* remove splitwise_role and engine_worker_queue_port

* fix xpu

* fix xpu

* fix xpu

* fix unittest

* resolve conflct
2025-09-19 17:01:52 +08:00
luukunn
ee9d8a840a [fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4086)
* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* add completion_token_ids

* add logger

* fix reasoning_max_tokens ParameterError

* add unittest

* add unittest

* add unittest

* add unittest

* add unittest

* add unit test
2025-09-19 14:26:01 +08:00
chen
66a98b44ed ep support logprob (#4089) (#4151) 2025-09-19 14:07:31 +08:00
Yuanle Liu
a685e5ad35 Each module should have its own plugins_loaded (#4164) 2025-09-19 14:06:10 +08:00
xiaolei373
ddf5606263 Bugfix test exception (#4171)
* feat(log):add_request_and_response_log

* modify default error type
2025-09-19 11:48:49 +08:00
Sunny-bot1
c3b8ebeb18 [Optimize] Machete using group scale default (#4121)
Some checks failed
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-18 13:51:11 +08:00
qwes5s5
62b8b02e08 fix_unitest (#4159)
Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-18 11:17:15 +08:00
xiaolei373
98447beb4d Add param valid log (#4113)
* feat(log):add_request_and_response_log

* [bugfix] add param valid log

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-18 10:39:24 +08:00
chenjian
618ccdbfba [Feature] Support mixed deployment with yiyan adapter in develop (#3976)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* [Feature] Support mixed deployment with yiyan adapter in release2.2

* fix metrics

* add unit test

* add unit test

* add unit test

* fix ci

* fix for eb5

* fix ci

* fix ci

* fix ci

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-18 01:52:20 +08:00
YuBaoku
2745f37017 [CI] enhance clean port and add waiting time (#4152)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-17 20:31:49 +08:00
gaoziyuan
896e3bb606 [NewFeture]add ep rollout model init and update/clear ep buffer (#4039)
* fix gid

* merge

* fix test

* fix bug

* fix

* fix ci
2025-09-17 20:24:53 +08:00
YuanRisheng
0d3a57a2c6 fix unittest (#4155) 2025-09-17 20:20:26 +08:00
qw86972190
b52971749c Print KV Cache available memory and block memory usage in GB format (#4148) 2025-09-17 20:01:55 +08:00
RichardWooSJTU
2adca04f1f Reconstruct streaming data transfer with zmq (#3836)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* reconstruct USE_GET_SAVE_OUTPUT_V1

* fix ut

* use dp rank

* fix ci
2025-09-17 14:30:39 +08:00
Jiang-Jia-Jun
f9766f917b [BugFix] Forbiden FD_DISABLED_RECOVER while ENABLE_V1_KVCACHE_SCHEDULER (#4142)
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
2025-09-17 14:11:44 +08:00
YuanRisheng
2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00
YUNSHEN XIE
c01a756912 mv test to tests (#4129)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-16 20:45:40 +08:00
Zhang Yulong
cd09913552 Update test_w4a8_model.py (#4125) 2025-09-16 20:43:10 +08:00
chenjian
67e6d8c691 [Feature] Set prefix caching as default (#3814)
* Set prefix caching as default

* Set prefix caching as default

* Set prefix caching as default

* skip dynamic load scene

* fix kill bug

* fix kill bug

* fix kill bug

* fix

* fix

* fix ci
2025-09-16 20:34:27 +08:00
Yuan Xiaolan
de8638b1e9 fix dynamic Cfp8 computing error (#4119)
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-16 20:21:49 +08:00
YUNSHEN XIE
4f8901489c ci: Increase compilation task time limit (#4098)
* ci: Increase compilation task time limit

* update

* update

* rename

* update

* update
2025-09-16 20:05:45 +08:00
tianlef
e79a1a7938 x1_a3b config (#4135) 2025-09-16 19:44:46 +08:00
xiegegege
d682c97dd3 [benchmark]add lite-vl and x1 yaml (#4130) 2025-09-16 16:38:36 +08:00
Divano
8e49d99009 Addcase (#4112)
logprob 没跑,不影响,增加校验openai 异常情况下 错误输出格式字段的case
2025-09-16 16:12:14 +08:00
tianlef
83bf1fd5aa [Doc]add plas attention config (#4128) 2025-09-16 15:55:12 +08:00
co63oc
b70ca35c0b 【Hackathon 9th No.52】add test_dynamic_per_token_scaled_fp8_quant (#4015)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* add test_dynamic_per_token_scaled_fp8_quant

* fix

* add bfloat16

* ci
2025-09-16 14:11:29 +08:00
Echo-Nie
befe463f01 【Hackathon 9th No.37】add test_top_k_renorm_probs (#3755)
* add test_top_k_renorm_probs.py

* add size=2,3
2025-09-16 11:12:46 +08:00
Sunny-bot1
442543cd6b fix ep wint8 (#4102) 2025-09-16 11:05:33 +08:00
Yuanle Liu
ed2dcec829 add ignore=all for deepgemm (#4118)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-15 21:52:00 +08:00
Jiang-Jia-Jun
a04365a0c7 Update api_server.py 2025-09-15 21:31:33 +08:00
YuanRisheng
03b3d6175d fix mtp (#4105) 2025-09-15 20:26:07 +08:00
co63oc
17a27170bc fix typos (#4093) 2025-09-15 18:33:30 +08:00
bukejiyu
113e330030 fix bf16 and add comments (#4106) 2025-09-15 17:23:07 +08:00
freeliuzc
69aa2781a1 [MTP]Support mtp reshard (#4099)
* support rl reshard

* modify model name
2025-09-15 17:13:53 +08:00
freeliuzc
46911f903d [MTP]update hybrid-mtp-with-ngram (#4047) 2025-09-15 17:13:31 +08:00
Yuanle Liu
b1b33211e8 [CUDAGraph] Support multi output buffers and merge some fixes from feature/exp_0908 (#4062)
* refine cudagraph

* refine cudagraph

* typo

* fix

* fix plugins

* fix

* update

* update

* update
2025-09-15 16:21:30 +08:00
zhupengyang
9409665713 [xpu] support ep (#4067)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
2025-09-15 13:53:11 +08:00
bukejiyu
29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00
Sunny-bot1
b1a5b756a3 [Optimize] Support WINT8 and group scale for Machete (#3905) 2025-09-15 12:01:34 +08:00
Echo-Nie
4408dc7f67 【Hackathon 9th No.49】add test_pre_cache_len_concat (#3847)
* add test_pre_cache_len_concat

* fix according review, add ref_pre_cache_len_concat
2025-09-15 11:20:14 +08:00
co63oc
ef4a1aa2da 【Hackathon 9th No.61、65】add test_draft_model_update (#3940)
* add draft_model_update test

* fix

* fix

* fix

* fix

* fix
2025-09-15 11:19:50 +08:00
Zero Rains
f213ae1e86 [Bug Fix]fix the bug for cache_messager signal loss (#3879)
* fix the bug for real size 0 in cudagraph

* fix cache_messager
2025-09-15 11:16:24 +08:00
qwes5s5
553adb299e 【FastDeploy CLI】collect-env subcommand (#4044)
* collect-env subcommand

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
2025-09-15 10:31:23 +08:00
zhouchong
958abebeab Support offline inference with streaming output (#4071)
* Support offline inference with streaming output

* add unit test

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-15 10:27:03 +08:00
YUNSHEN XIE
4871f18dad fix(CE): update concurrency to stop CE tasks from canceling each other (#4083)
Some checks failed
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-12 19:16:26 +08:00
Ayakouji
987609c894 [BugFix] Fix image_feature 0-Size causing insert failed (#4042)
* update

* fix image_feature
2025-09-12 19:13:08 +08:00
xiaolei373
9ac539471d [format] Valid para format error info (#4035)
* feat(log):add_request_and_response_log

* 报错信息与OpenAI对齐
2025-09-12 19:05:17 +08:00
YuanRisheng
88ea565aba [BugFix]Fix load kv cache quant scale (#4077)
* fix kv cache

* fix kv_cache

* fix kv cache
2025-09-12 17:44:03 +08:00
co63oc
c86b3357ce 【Hackathon 9th No.78】add test_chat.py (#3958) 2025-09-12 16:53:27 +08:00
Echo-Nie
06f4b49ca3 【Hackathon 9th No.25】add test_fused_get_rotary_embedding (#3892)
* add test_fused_get_rotary_embedding

* 增加基于 NumPy 的基准实现

* 添加,开源软件的版权和许可声明
2025-09-12 15:38:43 +08:00
SuperNova
805f29a06c [Feature] refactor metax_gpu attention and moe and remove some useless code (#3688)
Co-authored-by: yongqiangma <xing.wo@163.com>
2025-09-12 14:40:25 +08:00
ltd0924
cab7a633fe [CI] add multi api server test (#4049)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* [BugFix] fix max streaming tokens invalid

* fix scheduler bug

* fix scheduler bug

* Update multi_api_server.py

* Create test_multi_api_server.py

* fix
2025-09-12 11:18:38 +08:00
qwes5s5
58e0785bab [metrics] update metrics markdown file (#4061)
* adjust md

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
2025-09-12 11:13:43 +08:00
co63oc
8466219ec8 fix typos (#3840)
* fix typos

* ci

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-12 11:04:38 +08:00
RichardWooSJTU
82dab8a91a Add token processor plugin support (#4059)
* Add token processor plugin support

* fix import

* fix import
2025-09-12 10:17:23 +08:00
chenjian
37f1632732 [Optimize] optimize prefix cache in develop (#3890)
* optimize prefix cache in release22

* fix

* fix

* fix

* add ci for v1

* add unit test

---------

Co-authored-by: xiegegege <46314656+xiegegege@users.noreply.github.com>
2025-09-12 10:15:59 +08:00
chen
4859f40b20 [Feature] GLM-45-AIR Support Mix Quantization(Dense wfp8afp8 and wint8 triton_moe_backend) (#4051)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
2025-09-11 20:08:09 +08:00
lddfym
2056a428bd [bug fix] Fix the placeholder in qwen prompt and add some unittests (#4065)
* fix the placeholder in qwen prompt

* fix the placeholder in qwen prompt

* add soem unittests for qwen_vl_processor
2025-09-11 20:00:02 +08:00
memoryCoderC
850465e8ed [Feature] add cli command chat,complete (#4037) 2025-09-11 19:53:14 +08:00
zhuzixuan
a47976e82d [Echo] Support more types of prompt echo (#4022)
* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

---------

Co-authored-by: luukunn <83932082+luukunn@users.noreply.github.com>
2025-09-11 19:34:44 +08:00
xiaoxiaohehe001
abdcef30aa [BugFix] mm_post_fix (#4005)
* mm_post_fix

* mm_post_fix_1
2025-09-11 19:09:46 +08:00
Zhang Yulong
d2ec7f6aa2 update ci (#4064)
* update ci

* update ci
2025-09-11 18:36:25 +08:00
YuBaoku
fec58639db [CI] skip test_structured_outputs* temporarily (#4055) 2025-09-11 18:07:50 +08:00
YuanRisheng
d2d04c2d5e [setup optimize]Support git submodule (#4033)
* support git submodule

* update setup

* fix ci network

* fix clone

* revert clone linux

* delete args

* fix ci

* update
2025-09-11 17:41:16 +08:00
SuperNova
d60f7c4661 fix import tests.utils error in tests/model_loader/test_load_mtp.py (#4027)
Co-authored-by: yongqiangma <xing.wo@163.com>
2025-09-11 16:47:16 +08:00
CSWYF3634076
e4c64a71cc [BugFix] qwen2.5vl enable_thinking=true and image_patch_id bug fix (#3921) 2025-09-11 15:08:24 +08:00
bukejiyu
2650f58740 [docs] Update environment variables documentation (#3957)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
2025-09-10 21:17:06 -07:00
co63oc
2af0f671b1 【Hackathon 9th No.55】add test_update_inputs_v1.py (#3992) 2025-09-11 11:34:22 +08:00
AIbin
a7392a0ff9 【Inference Optimize】DeepSeek-V3-model MLA Optimize (#3886)
* support MLA chunk_size auto search & cuda_graph
2025-09-11 10:46:09 +08:00
chen
637d96c6ae [Feature] Support zai-org/GLM-4.5-Air BF16 model (#3928)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
* support glm45_air
2025-09-10 19:36:10 +08:00
freeliuzc
7ee100903f support rope_3d in spec mode (#4034) 2025-09-10 03:15:05 -07:00
ltd0924
684e93269b [Fix] fix multi api server log dir (#3967)
* [BugFix] fix max streaming tokens invalid

* fix scheduler bug

* fix scheduler bug

* Update multi_api_server.py
2025-09-10 17:15:30 +08:00
wanrui
276f73cf83 【Hackathon 9th No.28】add test_cutlass_fp8_fp8_fp8_dual_gemm_fused (#3935)
* add test_cutlass_fp8_fp8_fp8_dual_gemm_fused

* fix the version

* fix code style

---------

Co-authored-by: Tao Luo <luotao02@baidu.com>
2025-09-10 14:57:49 +08:00
RAM
d3e4ae3d49 [Executor] Adjust signal sending order in RL training (#3773)
* Adjust processing order

* fix bug

* fix update_parameters bug

* refine code
2025-09-10 13:24:20 +08:00
Ayakouji
453487d5b0 [Feat] ernie4_5_vl_moe support CudaGraph (#3226)
* delete dynamic control flow for decode

* coda-style

* fix scatter/gather typos and use input stream instead default stream

* support 0-Size Tensor

* update runner and model

* using static mem address as input

* fix mem leak

* refine code

* update mm_buffer

* fix typo

* fix buffersize

* fix unk token

* refine code

* refine

* support other arch

* open cudagraph in vlci

* fix

* update

* update

* update

* fix cmd

* update

---------

Co-authored-by: aquagull <hongyuh@qq.com>
Co-authored-by: Yuanle Liu <yuanlehome@163.com>
2025-09-10 13:11:57 +08:00
zhupengyang
9d0074a91a [xpu] add ep custom ops (#3911)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
2025-09-10 12:22:50 +08:00
Yuanle Liu
c3b2a60fb8 [BugFix] Fix the abnormal memory usage caused by shape errors in the triton moe backend (#4026)
* fix device_id to in

* fix triton_moe bug
2025-09-09 20:05:54 -07:00
周周周
dbab579299 clean code (#4020) 2025-09-10 10:56:15 +08:00
guozhuangzhuang
f078a959b6 metrics shared folder naming (#4007)
* Fixed the issue of metrics file conflicts between multiple instances on a single machine

* Use uuid to name the metrics shared folder

* Use uuid to name the metrics shared folder
2025-09-10 10:47:20 +08:00
Sunny-bot1
3b1da6e4dd support v1 loader for machete (#3999) 2025-09-10 10:21:33 +08:00
YuanRisheng
b3fac5bde1 [V1 Loader] Ernie kv cache quant support v1 loader (#3899)
Some checks failed
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
* support c8 for ernie

* add unittest

* support vl

* fix c8
2025-09-09 05:25:08 -07:00
369 changed files with 21619 additions and 3387 deletions

View File

@@ -160,6 +160,7 @@ jobs:
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
pushd tests/ce/deploy
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \

View File

@@ -160,6 +160,7 @@ jobs:
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
pushd tests/ce/deploy
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \

View File

@@ -55,7 +55,7 @@ on:
jobs:
fd-build:
runs-on: [self-hosted, GPU-Build]
timeout-minutes: 240
timeout-minutes: 360
outputs:
wheel_path: ${{ steps.set_output.outputs.wheel_path }}
steps:
@@ -134,6 +134,7 @@ jobs:
fi
git config --global --add safe.directory /workspace/FastDeploy
chown -R $(whoami) /workspace/FastDeploy
cd FastDeploy
if [[ "${WITH_NIGHTLY_BUILD}" == "ON" ]];then
GIT_COMMIT_TIME=$(git --no-pager show -s --format=%ci HEAD)

View File

@@ -29,7 +29,7 @@ jobs:
outputs:
docker_name_precheck: ${{ steps.docker_build.outputs.docker_name_precheck }}
steps:
- name: Code Prepare
- name: Docker Build
id: docker_build
shell: bash
env:

View File

@@ -147,6 +147,7 @@ jobs:
--skip install
cd PaddleTest/framework/ServeTest
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \

View File

@@ -82,6 +82,9 @@ jobs:
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
FD_ZMQ_RECV_REQUEST_SERVER_PORT=$((42048 + DEVICE_PORT * 100))
FD_ZMQ_SEND_RESPONSE_SERVER_PORT=$((42038 + DEVICE_PORT * 100))
FD_ZMQ_CONTROL_CMD_SERVER_PORTS=$((42028 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"

View File

@@ -41,7 +41,7 @@ jobs:
run_tests_with_coverage:
runs-on: [self-hosted, GPU-h1z1-2Cards]
timeout-minutes: 60
timeout-minutes: 90
needs: check_cov_skip
if: needs.check_cov_skip.outputs.can-skip != 'true'
outputs:

View File

@@ -9,7 +9,7 @@ on:
permissions: read-all
concurrency:
group: ${{ github.ref }}-${{ github.sha }}
group: CE-Job-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true
jobs:

View File

@@ -8,7 +8,7 @@ on:
permissions: read-all
concurrency:
group: ${{ github.ref }}-${{ github.sha }}
group: CI-Images-Build-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true

View File

@@ -13,7 +13,7 @@ on:
permissions: read-all
concurrency:
group: ${{ github.ref }}-${{ github.sha }}
group: Publish-Job-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true

10
.gitmodules vendored Normal file
View File

@@ -0,0 +1,10 @@
[submodule "custom_ops/third_party/DeepGEMM"]
path = custom_ops/third_party/DeepGEMM
url = https://github.com/deepseek-ai/DeepGEMM.git
ignore = all
[submodule "custom_ops/third_party/cutlass"]
path = custom_ops/third_party/cutlass
url = https://github.com/NVIDIA/cutlass.git
[submodule "custom_ops/third_party/nlohmann_json"]
path = custom_ops/third_party/nlohmann_json
url = https://github.com/nlohmann/json.git

View File

@@ -98,7 +98,7 @@ def main(args):
raise ValueError("--max_concurrency should be same length as --s_itl_base_model")
for max_concurrency, s_itl in zip(args.max_concurrency, args.s_itl_base_model):
# Wramup
# Warmup
print("Starting warmup...")
with open(os.devnull, "w") as f:
with contextlib.redirect_stdout(f):

View File

@@ -6,3 +6,4 @@ tensor_parallel_size: 8
max_num_batched_tokens: 4096
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint4

View File

@@ -0,0 +1,6 @@
tensor_parallel_size: 1
max_model_len: 131072
max_num_seqs: 32
quantization: wint4
max_num_batched_tokens: 8192
plas_attention_config: '{"plas_encoder_top_k_left": 50, "plas_encoder_top_k_right": 60, "plas_decoder_top_k_left": 100, "plas_decoder_top_k_right": 120}'

View File

@@ -6,3 +6,4 @@ tensor_parallel_size: 8
max_num_batched_tokens: 4096
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint8

View File

@@ -0,0 +1,5 @@
max_model_len: 32768
max_num_seqs: 256
kv_cache_ratio: 0.75
tensor_parallel_size: 4
gpu_memory_utilization: 0.9

View File

@@ -13,3 +13,4 @@ pd_comm_port: "2334"
max_num_batched_tokens: 384
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint4

View File

@@ -10,3 +10,4 @@ engine_worker_queue_port: 6677
cache_transfer_protocol: "rdma,ipc"
rdma_comm_ports: "7675,7676,7677,7678"
pd_comm_port: "2333"
quantization: wint4

View File

@@ -0,0 +1,11 @@
enable_mm: True
max_model_len: 131072
max_num_seqs: 56
gpu_memory_utilization: 0.8
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint4
limit_mm_per_prompt: '{"image": 100, "video": 100}'
enable_chunked_prefill: True
max_num_batched_tokens: 384
reasoning_parser: ernie-45-vl

View File

@@ -1,7 +1,7 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 36
gpu_memory_utilization: 0.95
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint8

View File

@@ -1,7 +1,7 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 36
gpu_memory_utilization: 0.8
gpu_memory_utilization: 0.85
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint8

View File

@@ -0,0 +1,9 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
reasoning_parser: ernie-45-vl

View File

@@ -0,0 +1,10 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
quantization: wint4
reasoning_parser: ernie-45-vl

View File

@@ -0,0 +1,10 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
quantization: wint8
reasoning_parser: ernie-45-vl

View File

@@ -0,0 +1 @@
max_tokens: 131071

View File

@@ -0,0 +1 @@
max_tokens: 12288

View File

@@ -2,7 +2,7 @@ top_p: 0.95
temperature: 0.6
metadata:
min_tokens: 1
max_tokens: 65535
max_tokens: 131071
repetition_penalty: 1.0
frequency_penalty: 0
presence_penalty: 0

View File

@@ -0,0 +1,6 @@
tensor_parallel_size: 1
max_model_len: 131072
max_num_seqs: 32
reasoning_parser: ernie_x1
tool_call_parser: ernie_x1
load_choices: "default_v1"

View File

@@ -143,9 +143,9 @@ function build_and_install_ops() {
TMP_DIR_REAL_PATH=`readlink -f ${OPS_TMP_DIR}`
is_xpu=`$python -c "import paddle; print(paddle.is_compiled_with_xpu())"`
if [ "$is_xpu" = "True" ]; then
cd xpu_ops/src
cd xpu_ops
bash build.sh ${TMP_DIR_REAL_PATH}
cd ../..
cd ..
elif [ "$FD_CPU_USE_BF16" == "true" ]; then
if [ "$FD_BUILDING_ARCS" == "" ]; then
FD_CPU_USE_BF16=True ${python} setup_ops.py install --install-lib ${OPS_TMP_DIR}

View File

@@ -428,6 +428,142 @@ __global__ void append_decode_cache_T_rope_kernel(
}
}
template <typename T, int VecSize = 1>
__global__ void append_decode_cache_T_neox_partial_rope_kernel(
const T* __restrict__ qkv, // [bsz, num_heads + 2 * kv_num_heads,
// head_size]
T* __restrict__ key_cache, // [num_blocks, kv_num_heads, block_size,
// head_size // 2]
T* __restrict__ value_cache, // [num_blocks, kv_num_heads, block_size,
// head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
const int* __restrict__ seq_lens_encoder, // [bsz]
const float* __restrict__ cos_emb, // [2, 1, max_model_len, 1, rotary_dim/2]
const float* __restrict__ sin_emb, // [2, 1, max_model_len, 1, rotary_dim/2]
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int head_size,
const int rotary_dim,
const int block_size,
const uint32_t elem_cnt,
const int kv_num_heads,
const bool rope_3d) {
using LoadT = AlignedVector<T, VecSize>;
using LoadBiasT = AlignedVector<T, VecSize>;
using LoadKVT = AlignedVector<T, VecSize>;
constexpr int HalfVecSize = VecSize / 2;
using LoadEmbT = AlignedVector<float, VecSize>;
LoadT left_vec, right_vec;
LoadBiasT left_bias_vec, right_bias_vec;
LoadKVT left_cache_vec, right_cache_vec;
LoadEmbT cos_emb_vec;
LoadEmbT sin_emb_vec;
int64_t global_thread_idx = blockDim.x * blockIdx.x + threadIdx.x;
const int half_head_size = head_size / 2;
const int half_rotary_dim = rotary_dim / 2;
const int64_t hidden_size = (num_heads + 2 * kv_num_heads) * head_size;
const int64_t half_hidden_size = hidden_size / 2;
// const int64_t offset = 2 * hidden_size;
for (int32_t linear_index = global_thread_idx * VecSize,
step = gridDim.x * blockDim.x * VecSize;
linear_index < elem_cnt;
linear_index += step) {
const int ori_bi = linear_index / half_hidden_size;
const int bias = linear_index % half_hidden_size;
const int hi = bias / half_head_size; // q + k + v
const int h_bias = bias % half_head_size;
if (hi < num_heads && h_bias >= half_rotary_dim){
continue;
}
const int start_token_idx = cu_seqlens_q[ori_bi];
if (seq_lens_encoder[ori_bi] > 0) return;
const int write_seq_id = seq_lens[ori_bi];
if (write_seq_id == 0) continue;
const int* block_table_now = nullptr;
block_table_now = block_tables + ori_bi * max_blocks_per_seq;
const int block_idx = block_table_now[write_seq_id / block_size];
const int block_offset = write_seq_id % block_size;
uint32_t ori_idx_left =
start_token_idx * hidden_size + hi * head_size + h_bias;
uint32_t ori_idx_right = ori_idx_left + half_head_size;
if (hi < num_heads){
ori_idx_right = ori_idx_left + half_rotary_dim;
}else if (hi < num_heads + kv_num_heads){
if (h_bias < half_rotary_dim){
ori_idx_right = ori_idx_left + half_rotary_dim;
}else{
ori_idx_left = ori_idx_left + half_rotary_dim;
ori_idx_right = ori_idx_left + half_rotary_dim;
}
}
Load<T, VecSize>(&qkv[ori_idx_left], &left_vec);
Load<T, VecSize>(&qkv[ori_idx_right], &right_vec);
if (hi < num_heads + kv_num_heads) {
// q k rope
const uint32_t emb_idx = write_seq_id * half_rotary_dim + h_bias;
uint32_t new_emb_idx = rope_3d ? emb_idx + ori_bi * max_seq_len * head_size * 2 : emb_idx;
if (h_bias < half_rotary_dim){
Load<float, VecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
}
}
#pragma unroll
for (int i = 0; i < VecSize; i++) {
// rope
float input_left = static_cast<float>(left_vec[i]);
float input_right = static_cast<float>(right_vec[i]);
if (hi < num_heads + kv_num_heads && h_bias < half_rotary_dim) {
const float cos_tmp = cos_emb_vec[i];
const float sin_tmp = sin_emb_vec[i];
left_bias_vec[i] =
static_cast<T>(input_left * cos_tmp - input_right * sin_tmp);
right_bias_vec[i] =
static_cast<T>(input_right * cos_tmp + input_left * sin_tmp);
} else {
left_bias_vec[i] = static_cast<T>(input_left);
right_bias_vec[i] = static_cast<T>(input_right);
}
}
if (hi < num_heads) {
// write q
Store<T, VecSize>(left_bias_vec, &qkv_out[ori_idx_left]);
Store<T, VecSize>(right_bias_vec, &qkv_out[ori_idx_right]);
} else {
// write k/v
const uint32_t kv_head_idx = (hi - num_heads) % kv_num_heads;
uint32_t tgt_idx_left =
block_idx * kv_num_heads * block_size * head_size +
kv_head_idx * block_size * head_size + block_offset * head_size +
h_bias;
uint32_t tgt_idx_right = tgt_idx_left + half_head_size;
if (hi < num_heads + kv_num_heads) {
if (h_bias < half_rotary_dim) {
tgt_idx_right = tgt_idx_left + half_rotary_dim;
}else{
tgt_idx_left = tgt_idx_left + half_rotary_dim;
tgt_idx_right = tgt_idx_left + half_rotary_dim;
}
Store<T, VecSize>(left_bias_vec, &key_cache[tgt_idx_left]);
Store<T, VecSize>(right_bias_vec, &key_cache[tgt_idx_right]);
} else {
Store<T, VecSize>(left_bias_vec, &value_cache[tgt_idx_left]);
Store<T, VecSize>(right_bias_vec, &value_cache[tgt_idx_right]);
}
}
}
}
template <typename T, int VecSize = 1>
__global__ void append_decode_cache_T_neox_rope_kernel(
const T* __restrict__ qkv, // [bsz, num_heads + 2 * kv_num_heads,
@@ -913,7 +1049,7 @@ __global__ void append_decode_cache_int8_rope_qk_norm_kernel(
local_max = __hmax(local_max, __habs(out_vec2[i]));
}
#pragma unroll
for (int m_offset = 16; m_offset > 1; m_offset /= 2) {
for (int m_offset = 16; m_offset > 0; m_offset /= 2) {
local_max = __hmax(local_max, __shfl_xor_sync(0xffffffff, local_max, m_offset));
}

View File

@@ -94,6 +94,7 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
const int num_heads,
const int kv_num_heads,
const int dim_head,
const int rotary_dim,
const int block_size,
const int bsz,
const cudaStream_t& stream,
@@ -133,7 +134,29 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
kv_num_heads,
rope_3d);
} else {
append_decode_cache_T_neox_rope_kernel<T, PackSize>
if (rotary_dim < dim_head){
append_decode_cache_T_neox_partial_rope_kernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
max_seq_len,
max_blocks_per_seq,
num_heads,
dim_head,
rotary_dim,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
}else{
append_decode_cache_T_neox_rope_kernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
@@ -152,6 +175,7 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
elem_nums,
kv_num_heads,
rope_3d);
}
}
} else {
if (qkv_out_scales) {
@@ -516,11 +540,20 @@ void DecoderWriteCacheWithRoPEKernel(
const float* cos_emb =
rotary_embs ? rotary_embs.get().data<float>() : nullptr;
const float* sin_emb;
int rotary_dim = dim_head;
if (rotary_embs) {
sin_emb =
use_neox_rotary_style
? rotary_embs.get().data<float>() + max_seq_len * dim_head
: rotary_embs.get().data<float>() + max_seq_len * dim_head / 2;
rotary_dim = rotary_embs.get().dims()[rotary_embs.get().dims().size()-1] * 2;
if(rotary_dim < dim_head){
if (!use_neox_rotary_style || qkv_out_scales || q_norm_weight || k_norm_weight|| cache_quant_type_str != "none"){
PADDLE_THROW(phi::errors::Fatal(
"partial_rotary_factor < 1.0 only supports neox_rotary_style=True, qkv_out_scales is None, q_norm_weight/k_norm_weight) is None, and cache_quant_type_str is 'none'."));
}
sin_emb = rotary_embs.get().data<float>() + max_seq_len * rotary_dim / 2;
}
}
if (q_norm_weight && k_norm_weight) {
@@ -609,6 +642,7 @@ void DecoderWriteCacheWithRoPEKernel(
num_heads,
kv_num_heads,
dim_head,
rotary_dim,
block_size,
bsz,
stream,

View File

@@ -900,6 +900,74 @@ __global__ void GQANeoxVariableLengthRotaryKernel(
}
}
template <typename T, int VecSize = 1>
__global__ void GQANeoxVariableLengthPartialRotaryKernel(
const T *qkv,
const float *cos_emb,
const float *sin_emb,
const int *batch_id_per_token,
const int *cu_seqlens_q,
const int *seq_lens,
const int *seq_lens_decoder,
const float *qkv_out_scales,
const T *qkv_biases,
T *qkv_out,
const int64_t elem_cnt,
const int q_num_head,
const int kv_num_head,
const int seq_len,
const int head_dim,
const int rotary_dim,
const bool rope_3d) {
using LoadT = AlignedVector<T, VecSize>;
using LoadEmbT = AlignedVector<float, VecSize>;
LoadT left_vec;
LoadT right_vec;
LoadEmbT cos_emb_vec;
LoadEmbT sin_emb_vec;
int64_t global_thread_idx = blockDim.x * blockIdx.x + threadIdx.x;
const int rotary_dim_half = rotary_dim / 2;
const int offset = (q_num_head + kv_num_head) * rotary_dim_half;
for (int64_t linear_index = global_thread_idx * VecSize,
step = gridDim.x * blockDim.x * VecSize;
linear_index < elem_cnt;
linear_index += step) {
const int token_idx = linear_index / offset;
const int ori_bi = batch_id_per_token[token_idx];
if (seq_lens && seq_lens[ori_bi] == 0) continue;
const int bias = linear_index % offset;
const int hi = bias / rotary_dim_half;
const int h_bias = bias % rotary_dim_half;
const int ori_seq_id = (token_idx - cu_seqlens_q[ori_bi]) + seq_lens_decoder[ori_bi];
const int emb_idx = ori_seq_id * rotary_dim_half + h_bias;
int64_t new_emb_idx = rope_3d ? emb_idx + ori_bi * head_dim * seq_len * 2 : emb_idx;
const int base_idx_left =
token_idx * (q_num_head + 2 * kv_num_head) * head_dim + hi * head_dim +
h_bias;
const int base_idx_right = base_idx_left + rotary_dim_half;
Load<T, VecSize>(&qkv[base_idx_left], &left_vec);
Load<T, VecSize>(&qkv[base_idx_right], &right_vec);
Load<float, VecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
#pragma unroll
for (int i = 0; i < VecSize; i++) {
const float input_left = static_cast<float>(left_vec[i]);
const float input_right = static_cast<float>(right_vec[i]);
const float cos_tmp = cos_emb_vec[i];
const float sin_tmp = sin_emb_vec[i];
left_vec[i] =
static_cast<T>(input_left * cos_tmp - input_right * sin_tmp);
right_vec[i] =
static_cast<T>(input_right * cos_tmp + input_left * sin_tmp);
}
Store<T, VecSize>(left_vec, &qkv_out[base_idx_left]);
Store<T, VecSize>(right_vec, &qkv_out[base_idx_right]);
}
}
template <typename T, int VecSize = 1>
__global__ void cache_kernel(
const T *__restrict__ qkv, // [num_tokens, num_heads + 2 * kv_num_heads,
@@ -2160,6 +2228,7 @@ void gqa_rotary_qk_variable(
const int seq_len,
const int input_output_len,
const int dim_head,
const int rotary_dim,
const cudaStream_t &stream,
bool use_neox_style = false,
bool rope_3d = false) {
@@ -2240,7 +2309,38 @@ void gqa_rotary_qk_variable(
dim_head,
rope_3d);
} else {
GQANeoxVariableLengthRotaryKernel<T, PackSize>
if (rotary_dim < dim_head){
PD_CHECK((rotary_dim / 2) % PackSize == 0);
elem_nums =
qkv_out_scales
? token_num * (num_heads + 2 * kv_num_heads) * rotary_dim
: token_num * (num_heads + kv_num_heads) * rotary_dim; // for all q k v
if (use_neox_style) {
elem_nums /= 2;
}
const int pack_num_new = elem_nums / PackSize;
GetNumBlocks<128>(pack_num_new, &grid_size);
GQANeoxVariableLengthPartialRotaryKernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(
reinterpret_cast<const T *>(qkv_input),
cos_emb,
rotary_emb + input_output_len * rotary_dim / 2,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_decoder,
qkv_out_scales,
qkv_bias,
qkv_out,
elem_nums,
num_heads,
kv_num_heads,
seq_len,
dim_head,
rotary_dim,
rope_3d);
}else{
GQANeoxVariableLengthRotaryKernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(
reinterpret_cast<const T *>(qkv_input),
cos_emb,
@@ -2258,6 +2358,7 @@ void gqa_rotary_qk_variable(
seq_len,
dim_head,
rope_3d);
}
}
}
}

View File

@@ -55,9 +55,19 @@ void EncoderWriteCacheWithRopeKernel(
auto kv_num_heads = meta_data.kv_num_heads;
auto head_dim = meta_data.head_dims;
bool is_scale_channel_wise = false;
int rotary_dim = head_dim;
if (cache_k_scale && cache_k_scale.get().dims()[0] == head_dim * kv_num_heads) {
is_scale_channel_wise = true;
}
if (rotary_embs){
rotary_dim = rotary_embs.get().dims()[rotary_embs.get().dims().size()-1] * 2;
if(rotary_dim < head_dim){
if (!use_neox_style || q_norm_weight || k_norm_weight || num_heads == kv_num_heads || is_scale_channel_wise){
PADDLE_THROW(phi::errors::Fatal(
"partial_rotary_factor < 1.0 only supports use_neox_rotary_style=True, q_norm_weight/k_norm_weight) is None, GQA and is_scale_channel_wise=false."));
}
}
}
if (q_norm_weight && k_norm_weight) {
if (num_heads != kv_num_heads && !is_scale_channel_wise && !use_neox_style) {
@@ -125,6 +135,7 @@ void EncoderWriteCacheWithRopeKernel(
max_seq_len,
rope_3d ? rotary_embs.get().dims()[3] : rotary_embs.get().dims()[2],
head_dim,
rotary_dim,
stream,
use_neox_style,
rope_3d);

View File

@@ -11,10 +11,11 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cute/tensor.hpp"
#include "helper.h"
#include "paddle/extension.h"
#include "paddle/phi/core/memory/memcpy.h"
#include "utils.cuh"
template <int THREADBLOCK_SIZE>
__global__ void
@@ -116,6 +117,93 @@ void GetMaxLen(const paddle::Tensor &seq_lens_tensor,
max_len_tensor.data<int>(), batch_size);
}
template <uint32_t config_size>
__global__ void search_chunk_size_for_mla(
const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ num_blocks_x,
int *__restrict__ res_chunk_size,
const int bsz,
const int set_chunk_size,
const int block_size,
const int sm_cout) {
const uint32_t conf_id = threadIdx.x;
int gridx = 0;
if (set_chunk_size > 0 && conf_id == 0) {
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, set_chunk_size);
gridx += loop_times;
}
*num_blocks_x = gridx;
*res_chunk_size = set_chunk_size;
} else if (conf_id < config_size) {
__shared__ int gridx_shared[config_size];
// chunk_size is a multiple of 64
const int chunk_size = block_size << conf_id;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
gridx += loop_times;
}
gridx_shared[conf_id] = gridx;
__syncthreads();
if (threadIdx.x == 0) {
uint32_t res_id = 0;
uint32_t max_last_wave_block = 0;
for (uint32_t i = 1; i < config_size; i++) {
uint32_t last_wave_block = gridx_shared[i] % sm_cout;
if (last_wave_block >= max_last_wave_block) {
res_id = i;
max_last_wave_block = last_wave_block;
}
}
*num_blocks_x = gridx_shared[res_id];
*res_chunk_size = block_size << res_id;
}
}
}
__global__ void split_block_for_mla(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ batch_ids,
int *__restrict__ tile_ids_per_batch,
const int bsz,
const int chunk_size) {
if (threadIdx.x == 0) {
int index = 0;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
if (seq_len_encoder > 0) {
loop_times = 0;
}
for (uint32_t tile_id = 0; tile_id < loop_times; tile_id++) {
batch_ids[index] = bid;
tile_ids_per_batch[index++] = tile_id;
}
}
}
}
__global__ void split_q_block(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
int *__restrict__ batch_ids,
@@ -197,7 +285,9 @@ void GetBlockShapeAndSplitKVBlock(
const paddle::Tensor &seq_lens_this_time,
paddle::Tensor &decoder_batch_ids, // Inplace
paddle::Tensor &decoder_tile_ids_per_batch, // Inplace
paddle::Tensor &decoder_num_blocks_x_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_device, // Inplace
paddle::Tensor &decoder_chunk_size_device, // Inplace
paddle::Tensor &max_len_tensor_cpu, // Inplace, CPU
paddle::Tensor &encoder_batch_ids, // Inplace
paddle::Tensor &encoder_tile_ids_per_batch, // Inplace
@@ -230,8 +320,6 @@ void GetBlockShapeAndSplitKVBlock(
int max_system_len = max_len_cpu_ptr[6];
int max_just_dec_len_without_system = max_len_cpu_ptr[7];
auto max_len_kv =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_decoder.place());
get_max_len_kv_ernel<128><<<1, 128, 0, stream>>>(
@@ -241,6 +329,106 @@ void GetBlockShapeAndSplitKVBlock(
max_len_kv_cpu.copy_(max_len_kv, max_len_kv_cpu.place(), false);
// decoder
if (max_dec_len_this_time > 0) {
const bool mla_use_tensorcore = GetMlaUseTensorcore();
if (mla_use_tensorcore && group_size <= 64) {
const int set_chunk_size = get_mla_dec_chunk_size(bsz);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
int device;
cudaGetDevice(&device);
int sm_cout;
cudaDeviceGetAttribute(&sm_cout, cudaDevAttrMultiProcessorCount, device);
constexpr int config_size =
12; // search space for chunk size:[64, 128, 256, ... 131072]
search_chunk_size_for_mla<config_size>
<<<1, 32, 0, stream>>>(seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_num_blocks_device.data<int>(),
decoder_chunk_size_device.data<int>(),
bsz,
set_chunk_size,
block_size,
sm_cout);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
auto decoder_chunk_size_cpu =
decoder_chunk_size_device.copy_to(paddle::CPUPlace(), false);
const int chunk_size = decoder_chunk_size_cpu.data<int>()[0];
// NOTE: (changwenbin) When using auto_chunk,
// decode_max_tile_size must take into account the maximum case, where * 1024 can cover 128K.
// const uint32_t decoder_batch_shape = seq_lens_decoder.dims()[0] * 1024;
const uint32_t decoder_max_tile_size_per_bs_q =
div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape =
bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_batch_ids.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
split_block_for_mla<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
bsz,
chunk_size);
} else {
// Note:(changwenbin)In order to adapt to cudagraph, the maximum value should be taken here
const uint32_t decoder_max_tile_size_per_bs_q = div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape = bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_batch_ids.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_device.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
}
} else {
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
}
// encoder
if (max_enc_len_this_time > 0) {
const uint32_t max_tile_size_per_bs_kv = div_up(max_enc_dec_len_this_time, block_size);
const uint32_t kv_batch_shape = bsz * max_tile_size_per_bs_kv;
@@ -272,28 +460,6 @@ void GetBlockShapeAndSplitKVBlock(
encoder_num_blocks_x_cpu.copy_(encoder_num_blocks_x, encoder_num_blocks_x_cpu.place(), false);
}
if (max_just_dec_len_this_time > 0) {
// Clear buffer
const uint32_t decoder_max_tile_size_per_bs_q = div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape = bsz * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_batch_ids.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_num_blocks_x_cpu.data<int>(), 0, sizeof(int32_t), stream));
auto decoder_num_blocks_x =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_encoder.place());
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_x.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_x_cpu.copy_(decoder_num_blocks_x, decoder_num_blocks_x_cpu.place(), false);
}
}
PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
@@ -303,7 +469,9 @@ PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
"seq_lens_this_time",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks_x_cpu",
"decoder_num_blocks_cpu",
"decoder_num_blocks_device",
"decoder_chunk_size_device",
"max_len_tensor_cpu",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",

View File

@@ -46,7 +46,8 @@ __global__ void append_speculate_cache_T_rope_qk_norm_kernel(
const int gqa_group_size,
const float* q_norm_weight,
const float* k_norm_weight,
const float rms_norm_eps) {
const float rms_norm_eps,
const bool rope_3d) {
using LoadT = AlignedVector<T, VecSize>;
using LoadFloat = AlignedVector<float, VecSize>;
using LoadInT = AlignedVector<InT, VecSize>;
@@ -109,8 +110,9 @@ __global__ void append_speculate_cache_T_rope_qk_norm_kernel(
if (hi < num_heads + gqa_group_size) {
// q k rope
const int64_t emb_idx = write_seq_id * half_head_size + h_bias / 2;
Load<float, HalfVecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[emb_idx], &sin_emb_vec);
uint32_t new_emb_idx = rope_3d ? emb_idx + ori_bi * max_seq_len * head_size : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
}
float thread_m2 = 0.0f;
float warp_m2 = 0.0f;

View File

@@ -41,7 +41,8 @@ void append_speculate_cache_rope_qk_norm(const QKV_TYPE* qkv,
const bool use_neox_style,
const float* q_norm_weight,
const float* k_norm_weight,
const float rms_norm_eps) {
const float rms_norm_eps,
const bool rope_3d) {
int output_inner_dim = num_heads + 2 * kv_num_heads;
const uint32_t elem_nums =
use_neox_style ? token_num * (num_heads + 2 * kv_num_heads) * dim_head / 2
@@ -53,7 +54,6 @@ void append_speculate_cache_rope_qk_norm(const QKV_TYPE* qkv,
const int blocksize = 128;
int grid_size = 1;
GetNumBlocks<128>(pack_num, &grid_size);
if (use_neox_style) {
PD_THROW(
"append_speculate_cache_rope_qk_norm not support neox rope yet");
@@ -82,7 +82,8 @@ void append_speculate_cache_rope_qk_norm(const QKV_TYPE* qkv,
kv_num_heads,
q_norm_weight,
k_norm_weight,
rms_norm_eps);
rms_norm_eps,
rope_3d);
}
}
@@ -426,7 +427,6 @@ void SpeculateWriteCacheWithRoPEKernel(
? rotary_embs.get().data<float>() + max_seq_len * dim_head
: rotary_embs.get().data<float>() + max_seq_len * dim_head / 2;
}
if (q_norm_weight && k_norm_weight) {
if (cache_quant_type_str == "none") {
append_speculate_cache_rope_qk_norm(
@@ -457,11 +457,13 @@ void SpeculateWriteCacheWithRoPEKernel(
use_neox_rotary_style,
reinterpret_cast<const float*>(q_norm_weight.get().data<float>()),
reinterpret_cast<const float*>(k_norm_weight.get().data<float>()),
rms_norm_eps);
rms_norm_eps,
rope_3d);
} else {
PD_THROW(
"append_decode_cache_rope_qk_norm not support cachekv quant yet");
}
} else {
if (cache_quant_type_str == "none") {
append_speculate_cache_rope(

View File

@@ -63,7 +63,7 @@ std::vector<paddle::Tensor> AppendAttention(
const paddle::Tensor &kv_num_blocks,
const paddle::Tensor &decoder_batch_ids,
const paddle::Tensor &decoder_tile_ids_per_batch,
const paddle::Tensor &decoder_num_blocks,
const paddle::Tensor &decoder_num_blocks_cpu,
const paddle::Tensor &set_max_lengths, const paddle::Tensor &max_len_kv,
const paddle::optional<paddle::Tensor> &rotary_embs,
const paddle::optional<paddle::Tensor> &attn_mask,
@@ -105,7 +105,7 @@ void AppendAttentionWithOutput(
const paddle::Tensor &kv_num_blocks,
const paddle::Tensor &decoder_batch_ids,
const paddle::Tensor &decoder_tile_ids_per_batch,
const paddle::Tensor &decoder_num_blocks,
const paddle::Tensor &decoder_num_blocks_cpu,
const paddle::Tensor &set_max_lengths, const paddle::Tensor &max_len_kv,
paddle::Tensor &fmha_out,
const paddle::optional<paddle::Tensor> &rotary_embs,
@@ -305,7 +305,9 @@ void GetBlockShapeAndSplitKVBlock(
const paddle::Tensor &seq_lens_this_time,
paddle::Tensor &decoder_batch_ids, // Inplace
paddle::Tensor &decoder_tile_ids_per_batch, // Inplace
paddle::Tensor &decoder_num_blocks_x_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_device, // Inplace
paddle::Tensor &decoder_chunk_size_device, // Inplace
paddle::Tensor &max_len_tensor_cpu, // Inplace, Pinned Memory
paddle::Tensor &encoder_batch_ids, // Inplace
paddle::Tensor &encoder_tile_ids_per_batch, // Inplace
@@ -414,8 +416,8 @@ std::vector<paddle::Tensor> MoEDeepGEMMDePermute(
const paddle::Tensor &topk_idx, const paddle::Tensor &topk_weights);
void TextImageIndexOut(const paddle::Tensor &token_type_ids,
const paddle::Tensor &text_input,
const paddle::Tensor &image_input);
paddle::Tensor &text_input,
paddle::Tensor &image_input);
void TextImageGatherScatter(paddle::Tensor &input, paddle::Tensor &text_input,
paddle::Tensor &image_input,
@@ -473,23 +475,18 @@ std::vector<paddle::Tensor> MultiHeadLatentAttention(
const paddle::Tensor& query,
const paddle::Tensor& key_cache,
const paddle::Tensor& value_cache,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
const paddle::Tensor& encoder_batch_ids,
const paddle::Tensor& encoder_tile_ids_per_batch,
const paddle::Tensor& encoder_num_blocks,
const paddle::Tensor& kv_batch_ids,
const paddle::Tensor& kv_tile_ids_per_batch,
const paddle::Tensor& kv_num_blocks,
const paddle::Tensor& decoder_batch_ids,
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& decoder_num_blocks_cpu,
const paddle::Tensor& max_enc_len_this_time,
const paddle::Tensor& decoder_num_blocks_device,
const paddle::Tensor& decoder_chunk_size_device,
const paddle::Tensor& max_dec_len_this_time,
const paddle::Tensor& max_len_kv,
const paddle::optional<paddle::Tensor>& attn_mask,

View File

@@ -303,7 +303,7 @@ class CustomAllreduce {
bool full_nvlink_;
RankSignals sg_;
// Stores an map from a pointer to its peer pointters from all ranks.
// Stores an map from a pointer to its peer pointers from all ranks.
std::unordered_map<void*, RankData*> buffers_;
Signal* self_sg_;

View File

@@ -59,6 +59,15 @@ inline uint32_t get_cascade_attention_num_threads() {
inline bool get_mla_use_tensorcore() {
static const char* mla_use_tensorcore_env = std::getenv("FLAGS_mla_use_tensorcore");
static const uint32_t mla_use_tensorcore =
mla_use_tensorcore_env == nullptr ? 1 : std::stoul(std::string(mla_use_tensorcore_env));
mla_use_tensorcore_env == nullptr ? 0 : std::stoul(std::string(mla_use_tensorcore_env));
return mla_use_tensorcore != 0 ? true : false;
}
inline int get_mla_dec_chunk_size(int bsz) {
static const char* mla_dec_chunk_size_env =
std::getenv("FLAGS_mla_dec_chunk_size");
static const int mla_dec_chunk_size =
mla_dec_chunk_size_env == nullptr
? -1
: std::stoi(std::string(mla_dec_chunk_size_env));
return bsz > 1 ? mla_dec_chunk_size : 64;
}

View File

@@ -39,9 +39,6 @@ void GetOutputTopK(const paddle::Tensor& x,
int k,
int64_t rank_id,
bool wait_flag) {
if (rank_id > 0) {
return;
}
static struct msgdata msg_rcv;
int msg_queue_id = 1;

View File

@@ -132,7 +132,7 @@ std::vector<paddle::DataType> GetPaddingOffsetInferDtype(
}
PD_BUILD_STATIC_OP(get_padding_offset)
.Inputs({"input_ids", "token_num", "cum_offsets", "seq_len"})
.Inputs({"input_ids", "cum_offsets", "token_num", "seq_len"})
.Outputs({"x_remove_padding",
"batch_id_per_token",
"cu_seqlens_q",

View File

@@ -563,3 +563,11 @@ inline int GetSMVersion() {
return sm_version;
}
inline bool GetMlaUseTensorcore() {
static const bool flags_mla_use_tensorcore = get_mla_use_tensorcore();
static const bool enable_mla_tensorcore = GetSMVersion() >= 90 ? true : false;
const bool mla_use_tensorcore =
flags_mla_use_tensorcore && enable_mla_tensorcore;
return mla_use_tensorcore;
}

View File

@@ -30,10 +30,12 @@ paddle::Tensor mm(paddle::Tensor const& A, paddle::Tensor const& B,
std::optional<paddle::Tensor> const& maybe_token_scales,
std::string maybe_schedule) {
machete::ScalarType const b_type = machete::ScalarType::from_id(b_type_id);
std::optional<int64_t> maybe_group_size_opt;
std::optional<int64_t> maybe_group_size_opt = std::optional<int64_t>(maybe_group_size);
std::optional<std::string> maybe_schedule_opt;
if (maybe_schedule == "") {
maybe_schedule_opt = std::nullopt;
} else {
maybe_schedule_opt = std::optional<std::string>(maybe_schedule);
}
return machete::mm_dispatch({.A = A,
.B = B,
@@ -63,6 +65,8 @@ std::vector<paddle::Tensor> MacheteMMKernel(
paddle::DataType maybe_out_type;
if (b_type_str == "uint4b8") {
b_type_id = machete::kU4B8.id();
} else if (b_type_str == "uint8b128") {
b_type_id = machete::kU8B128.id();
} else {
PADDLE_ENFORCE(false, "b_type_str not supported!");
}

View File

@@ -51,6 +51,8 @@ std::vector<paddle::Tensor> MachetePrepackBKernel(
if (b_type_str == "uint4b8") {
b_type_id = machete::kU4B8.id();
} else if (b_type_str == "uint8b128") {
b_type_id = machete::kU8B128.id();
} else {
PADDLE_ENFORCE(false, "b_type_str not supported!");
}

View File

@@ -70,7 +70,6 @@ void BatchMLAWithPagedKVCacheKernel(
const paddle::optional<paddle::Tensor>& smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
@@ -78,9 +77,8 @@ void BatchMLAWithPagedKVCacheKernel(
const paddle::Tensor& tile_ids_per_batch,
const paddle::Tensor& num_blocks_x_device,
const std::string& cache_quant_type_str,
const int num_blocks_x,
const paddle::Tensor& decoder_chunk_size_device,
const int max_seq_len,
const int max_dec_len,
const float softmax_scale,
const float quant_max_bound,
const float quant_min_bound,
@@ -97,14 +95,12 @@ void BatchMLAWithPagedKVCacheKernel(
const auto q_head_num = meta_data.q_num_heads;
const auto max_block_num_per_seq = meta_data.max_blocks_per_seq;
const auto max_block_num = bsz * max_block_num_per_seq;
const uint32_t chunk_size = get_max_partition_size(bsz);
int q_head_dim = meta_data.head_dims;
int k_head_dim = meta_data.head_dims;
int v_head_dim = meta_data.head_dims_v;
// int num_chunks = max_dec_len / chunk_size;
int num_chunks = div_up(max_dec_len, chunk_size);
int num_chunks = div_up(max_seq_len, 64);
auto *allocator = paddle::GetAllocator(q.place());
phi::Allocator::AllocationPtr O_tmp, m_tmp, d_tmp;
@@ -127,14 +123,14 @@ void BatchMLAWithPagedKVCacheKernel(
params.d = reinterpret_cast<float*>(d_tmp->ptr());
params.block_tables = const_cast<int*>(block_tables.data<int>());
params.seq_lens_this_time = const_cast<int*>(seq_lens_this_time.data<int>());
params.seq_lens_encoder = const_cast<int*>(seq_lens_encoder.data<int>());
params.seq_lens_decoder = const_cast<int*>(seq_lens_decoder.data<int>());
params.cumsum_q_seqlens = const_cast<int*>(cu_seqlens_q.data<int>());
params.batch_id_per_token = const_cast<int*>(batch_id_per_token.data<int>());
params.batch_ids = const_cast<int*>(batch_ids.data<int>());
params.tile_ids_per_batch = const_cast<int*>(tile_ids_per_batch.data<int>());
params.num_blocks_x = const_cast<int*>(num_blocks_x_device.data<int>());
params.num_blocks_x_int = num_blocks_x;
params.chunk_size_device =
const_cast<int*>(decoder_chunk_size_device.data<int>());
params.q_stride_bsz = q_head_num * q_head_dim;
params.q_stride_head_num = q_head_dim;
params.kv_stride_block_num = block_size * k_head_dim;
@@ -151,7 +147,6 @@ void BatchMLAWithPagedKVCacheKernel(
params.block_size = block_size;
params.max_draft_token_num = draft_token_num;
params.sm_scale = softmax_scale;
params.chunk_size = chunk_size;
params.chunk_num = num_chunks;
if (q_head_dim == 576) {
@@ -176,7 +171,6 @@ template void BatchMLAWithPagedKVCacheKernel<paddle::bfloat16>(
const paddle::optional<paddle::Tensor>& smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
@@ -184,9 +178,8 @@ template void BatchMLAWithPagedKVCacheKernel<paddle::bfloat16>(
const paddle::Tensor& tile_ids_per_batch,
const paddle::Tensor& num_blocks_x_device,
const std::string& cache_quant_type_str,
const int num_blocks_x,
const paddle::Tensor& decoder_chunk_size_device,
const int max_seq_len,
const int max_dec_len,
const float softmax_scale,
const float quant_max_bound,
const float quant_min_bound,
@@ -210,7 +203,6 @@ template void BatchMLAWithPagedKVCacheKernel<paddle::float16>(
const paddle::optional<paddle::Tensor>& smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
@@ -218,9 +210,8 @@ template void BatchMLAWithPagedKVCacheKernel<paddle::float16>(
const paddle::Tensor& tile_ids_per_batch,
const paddle::Tensor& num_blocks_x_device,
const std::string& cache_quant_type_str,
const int num_blocks_x,
const paddle::Tensor& decoder_chunk_size_device,
const int max_seq_len,
const int max_dec_len,
const float softmax_scale,
const float quant_max_bound,
const float quant_min_bound,

View File

@@ -47,7 +47,6 @@ void BatchMLAWithPagedKVCacheKernel(
const paddle::optional<paddle::Tensor>& smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
@@ -55,9 +54,8 @@ void BatchMLAWithPagedKVCacheKernel(
const paddle::Tensor& tile_ids_per_batch,
const paddle::Tensor& num_blocks_x_device,
const std::string& cache_quant_type_str,
const int num_blocks_x,
const paddle::Tensor& decoder_chunk_size_device,
const int max_seq_len,
const int max_dec_len,
const float softmax_scale,
const float quant_max_bound,
const float quant_min_bound,

View File

@@ -128,12 +128,13 @@ struct CollectiveMainloop {
DTypeMD const* d_ptr;
IdType const* kv_block_tables;
IdType const* seq_lens_this_time;
IdType const* seq_lens_encoder;
// IdType const* seq_lens_encoder;
IdType const* seq_lens_decoder;
IdType const* cumsum_q_seqlens;
IdType const* batch_ids;
IdType const* tile_ids_per_batch;
IdType const* num_blocks_x;
IdType const* chunk_size_device;
float sm_scale;
int bsz;
int max_block_num;
@@ -144,7 +145,7 @@ struct CollectiveMainloop {
int kv_stride_block_size;
int o_stride_bsz;
int o_stride_head_num;
int chunk_size;
// int chunk_size;
int chunk_num;
int max_draft_token_num;
};
@@ -160,12 +161,13 @@ struct CollectiveMainloop {
DTypeMD* d_ptr;
IdType* kv_block_tables;
IdType* seq_lens_this_time;
IdType* seq_lens_encoder;
// IdType* seq_lens_encoder;
IdType* seq_lens_decoder;
IdType* cumsum_q_seqlens;
IdType* batch_ids;
IdType* tile_ids_per_batch;
IdType* num_blocks_x;
IdType* chunk_size_device;
float sm_scale;
int bsz;
int max_block_num;
@@ -176,7 +178,7 @@ struct CollectiveMainloop {
int kv_stride_block_size;
int o_stride_bsz;
int o_stride_head_num;
int chunk_size;
// int chunk_size;
int chunk_num;
int max_draft_token_num;
TMA_KV tma_load_KV;
@@ -198,12 +200,13 @@ struct CollectiveMainloop {
const_cast<DTypeMD*>(args.d_ptr),
const_cast<IdType*>(args.kv_block_tables),
const_cast<IdType*>(args.seq_lens_this_time),
const_cast<IdType*>(args.seq_lens_encoder),
// const_cast<IdType*>(args.seq_lens_encoder),
const_cast<IdType*>(args.seq_lens_decoder),
const_cast<IdType*>(args.cumsum_q_seqlens),
const_cast<IdType*>(args.batch_ids),
const_cast<IdType*>(args.tile_ids_per_batch),
const_cast<IdType*>(args.num_blocks_x),
const_cast<IdType*>(args.chunk_size_device),
args.sm_scale,
args.bsz,
args.max_block_num,
@@ -214,7 +217,7 @@ struct CollectiveMainloop {
args.kv_stride_block_size,
args.o_stride_bsz,
args.o_stride_head_num,
args.chunk_size,
// args.chunk_size,
args.chunk_num,
args.max_draft_token_num,
tma_load_KV
@@ -281,9 +284,9 @@ struct CollectiveMainloop {
auto gmem_thr_copy_kv = gmem_tiled_copy_kv.get_slice(thread_idx);
static constexpr int BLOCK_SHAPE_KV = get<1>(TileShape_QKD{});
const int start_len = tile_idx * mainloop_params.chunk_size;
const int start_len = tile_idx * mainloop_params.chunk_size_device[0];
const int start_tile_idx = start_len / BLOCK_SHAPE_KV;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size, kv_len), BLOCK_SHAPE_KV) - 1;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size_device[0], kv_len), BLOCK_SHAPE_KV) - 1;
auto kv_block_tables = make_tensor(make_gmem_ptr(mainloop_params.kv_block_tables), make_layout(make_shape(mainloop_params.bsz, mainloop_params.max_block_num_per_seq), make_stride(mainloop_params.max_block_num_per_seq, 1)));
@@ -322,9 +325,9 @@ struct CollectiveMainloop {
group_modes<0, 2>(sK), group_modes<0, 2>(gKV));
static constexpr int BLOCK_SHAPE_KV = get<1>(TileShape_QKD{});
const int start_len = tile_idx * mainloop_params.chunk_size;
const int start_len = tile_idx * mainloop_params.chunk_size_device[0];
const int start_tile_idx = start_len / BLOCK_SHAPE_KV;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size, kv_len), BLOCK_SHAPE_KV) - 1;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size_device[0], kv_len), BLOCK_SHAPE_KV) - 1;
auto kv_block_tables = make_tensor(make_gmem_ptr(mainloop_params.kv_block_tables), make_layout(make_shape(mainloop_params.bsz, mainloop_params.max_block_num_per_seq), make_stride(mainloop_params.max_block_num_per_seq, 1)));

View File

@@ -57,7 +57,7 @@ CUTLASS_DEVICE void mma_f16(const Params& mainloop_params,
using SmemLayoutVtOneStage = typename Ktraits::SmemLayoutVtOneStage;
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
const int chunk_num_this_seq = cute::ceil_div(kv_len, mainloop_params.chunk_size);
const int chunk_num_this_seq = cute::ceil_div(kv_len, mainloop_params.chunk_size_device[0]);
static constexpr int BLOCK_SHAPE_Q = get<0>(TileShape_QKD{});
static constexpr int BLOCK_SHAPE_KV = get<1>(TileShape_QKD{});
@@ -84,9 +84,9 @@ CUTLASS_DEVICE void mma_f16(const Params& mainloop_params,
Tensor tOrV2 = threadMmaPVSS.partition_fragment_B(sVt_s2);
Tensor tOrP_CS2 = threadMmaPVSS.partition_fragment_A(sPSS);
const int start_len = tile_idx * mainloop_params.chunk_size;
const int start_len = tile_idx * mainloop_params.chunk_size_device[0];
const int start_tile_idx = start_len / BLOCK_SHAPE_KV;
const int end_tile_idx =cute::ceil_div(min(start_len + mainloop_params.chunk_size, kv_len), BLOCK_SHAPE_KV) - 1;
const int end_tile_idx =cute::ceil_div(min(start_len + mainloop_params.chunk_size_device[0], kv_len), BLOCK_SHAPE_KV) - 1;
int kv_tile_idx = end_tile_idx;
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
@@ -263,7 +263,7 @@ CUTLASS_DEVICE void mma_f16_two_stages(const Params& mainloop_params,
using SmemLayoutVtOneStage = typename Ktraits::SmemLayoutVtOneStage;
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
const int chunk_num_this_seq = cute::ceil_div(kv_len, mainloop_params.chunk_size);
const int chunk_num_this_seq = cute::ceil_div(kv_len, mainloop_params.chunk_size_device[0]);
static constexpr int BLOCK_SHAPE_Q = get<0>(TileShape_QKD{});
static constexpr int BLOCK_SHAPE_KV = get<1>(TileShape_QKD{});
@@ -295,9 +295,9 @@ CUTLASS_DEVICE void mma_f16_two_stages(const Params& mainloop_params,
Tensor tOrV4 = threadMmaPVSS.partition_fragment_B(sVt_s4);
Tensor tOrP_CS2 = threadMmaPVSS.partition_fragment_A(sPSS);
const int start_len = tile_idx * mainloop_params.chunk_size;
const int start_len = tile_idx * mainloop_params.chunk_size_device[0];
const int start_tile_idx = start_len / BLOCK_SHAPE_KV;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size, kv_len), BLOCK_SHAPE_KV) - 1;
const int end_tile_idx = cute::ceil_div(min(start_len + mainloop_params.chunk_size_device[0], kv_len), BLOCK_SHAPE_KV) - 1;
int kv_tile_idx = end_tile_idx;
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {

View File

@@ -62,13 +62,12 @@ struct Params {
alignas(16) DTypeQ *Q; // [token_num, head_num, dim_head]
alignas(16) DTypeKV *KV; // [max_block_num, block_size, dim_head]
alignas(16) DTypeO *O; // [token_num, head_num, dim_head]
alignas(16) DTypeO *O_tmp; // [num_chunks, bsz, head_num, dim_head]
alignas(16) float *m; // [num_chunks, bsz * max_draft_token_num * head_num]
alignas(16) float *d; // [num_chunks, bsz * max_draft_token_num * head_num]
alignas(16) DTypeO *O_tmp; // [max_num_chunks, bsz, head_num, dim_head]
alignas(16) float *m; // [max_num_chunks, bsz * max_draft_token_num * head_num]
alignas(16) float *d; // [max_num_chunks, bsz * max_draft_token_num * head_num]
alignas(16) IdType *block_tables;
alignas(16) IdType *seq_lens_this_time;
alignas(16) IdType *seq_lens_encoder;
alignas(16) IdType *seq_lens_decoder;
alignas(16) IdType *cumsum_q_seqlens;
alignas(16) IdType *batch_id_per_token;
@@ -76,7 +75,7 @@ struct Params {
alignas(16) IdType *batch_ids;
alignas(16) IdType *tile_ids_per_batch;
alignas(16) IdType *num_blocks_x;
alignas(16) IdType *chunk_size_device;
uint32_t q_stride_bsz;
uint32_t q_stride_head_num;
@@ -96,9 +95,7 @@ struct Params {
int vo_head_dim;
int block_size;
int max_draft_token_num;
int chunk_size;
int chunk_num;
int num_blocks_x_int;
float sm_scale;
};
@@ -118,7 +115,7 @@ struct Params {
return cudaErrorNotSupported; \
}
template <typename CollectiveMainloop, typename CollectiveEpilogue, typename Ktraits, bool CAUSAL, int SM_COUNT = 132, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=false>
template <typename CollectiveMainloop, typename CollectiveEpilogue, typename Ktraits, bool CAUSAL, int SM_COUNT = 132, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=true>
__global__ void __launch_bounds__(Ktraits::NUM_WARPS * cutlass::NumThreadsPerWarp, 1)
MLAWithKVCacheKernel(CUTE_GRID_CONSTANT
typename CollectiveMainloop::Params const mainloop_params,
@@ -137,6 +134,7 @@ MLAWithKVCacheKernel(CUTE_GRID_CONSTANT
static constexpr int BLOCK_SHAPE_Q = Ktraits::BLOCK_SHAPE_Q;
static constexpr int BLOCK_SHAPE_KV = Ktraits::BLOCK_SHAPE_KV;
const int num_blocks_x = mainloop_params.num_blocks_x[0];
const int chunk_size = mainloop_params.chunk_size_device[0];
static constexpr bool use_tma_load_kv = CollectiveMainloop::USE_TMA_LOAD_KV;
@@ -205,58 +203,10 @@ MLAWithKVCacheKernel(CUTE_GRID_CONSTANT
PipelineStateQ smem_pipe_write_q = cutlass::make_producer_start_state<MainloopPipelineQ>();
PipelineState smem_pipe_write_kv = cutlass::make_producer_start_state<MainloopPipeline>();
if constexpr(USE_FIXED_BLOCK) {
for (int i = blockIdx.x; i < num_blocks_x; i += SM_COUNT) {
const int bid = mainloop_params.batch_ids[i];
const int tile_id = mainloop_params.tile_ids_per_batch[i];
const int seq_len_now = mainloop_params.seq_lens_this_time[bid];
const int seq_len_encoder_now = mainloop_params.seq_lens_encoder[bid];
const int seq_len_decoder_now = mainloop_params.seq_lens_decoder[bid] + seq_len_now;
const int start_token_idx = mainloop_params.cumsum_q_seqlens[bid];
cutlass::arch::NamedBarrier::sync(Ktraits::NUM_THREADS,
/*id=*/static_cast<int>(NamedBarriers::kWG0WG1WG2Sync));
// load Q
collective_mainloop.load_q(
mainloop_params,
pipeline_q,
smem_pipe_write_q,
shared_storage,
threadIdx.x,
bid);
if constexpr (!use_tma_load_kv) {
// load kv
collective_mainloop.load_kv(
mainloop_params,
pipeline_kv,
smem_pipe_write_kv,
shared_storage,
bid,
seq_len_decoder_now,
tile_id
);
} else {
if (warp_idx_in_warpgroup == 0) {
// load kv tma
collective_mainloop.load_kv_tma(
mainloop_params,
pipeline_kv,
smem_pipe_write_kv,
shared_storage,
bid,
seq_len_decoder_now,
tile_id
);
}
}
}
} else {
const int block_id = blockIdx.x;
const int bid = mainloop_params.batch_ids[block_id];
const int tile_id = mainloop_params.tile_ids_per_batch[block_id];
for (int i = blockIdx.x; i < num_blocks_x; i += SM_COUNT) {
const int bid = mainloop_params.batch_ids[i];
const int tile_id = mainloop_params.tile_ids_per_batch[i];
const int seq_len_now = mainloop_params.seq_lens_this_time[bid];
const int seq_len_encoder_now = mainloop_params.seq_lens_encoder[bid];
const int seq_len_decoder_now = mainloop_params.seq_lens_decoder[bid] + seq_len_now;
const int start_token_idx = mainloop_params.cumsum_q_seqlens[bid];
cutlass::arch::NamedBarrier::sync(Ktraits::NUM_THREADS,
@@ -309,76 +259,12 @@ MLAWithKVCacheKernel(CUTE_GRID_CONSTANT
Tensor tOrO = partition_fragment_C(tiled_mma_pv, select<0, 1>(TileShape_PDV{}));
auto attention_updater = OnlineSoftmax<2 * size<1>(tOrO), /*WITH_SCALE=*/true>(mainloop_params.sm_scale);
if constexpr(USE_FIXED_BLOCK) {
for (int i = blockIdx.x; i < num_blocks_x; i += SM_COUNT) {
clear(tOrO);
clear(attention_updater.scores_scale);
const int bid = mainloop_params.batch_ids[i];
const int tile_id = mainloop_params.tile_ids_per_batch[i];
const int seq_len_now = mainloop_params.seq_lens_this_time[bid];
const int seq_len_encoder_now = mainloop_params.seq_lens_encoder[bid];
const int seq_len_decoder_now = mainloop_params.seq_lens_decoder[bid] + seq_len_now;
const int start_token_idx = mainloop_params.cumsum_q_seqlens[bid];
cutlass::arch::NamedBarrier::sync(Ktraits::NUM_THREADS,
/*id=*/static_cast<int>(NamedBarriers::kWG0WG1WG2Sync));
if constexpr (BLOCK_SHAPE_KV == 64) {
mma_f16<Ktraits, CAUSAL>(
mainloop_params,
pipeline_q,
smem_pipe_read_q,
pipeline_kv,
smem_pipe_read_kv,
tOrO,
attention_updater,
threadIdx.x - NUM_COPY_THREADS,
bid,
seq_len_decoder_now,
seq_len_now,
tile_id,
shared_storage);
} else if (BLOCK_SHAPE_KV == 32) {
mma_f16_two_stages<Ktraits, CAUSAL>(
mainloop_params,
pipeline_q,
smem_pipe_read_q,
pipeline_kv,
smem_pipe_read_kv,
tOrO,
attention_updater,
threadIdx.x - NUM_COPY_THREADS,
bid,
seq_len_decoder_now,
seq_len_now,
tile_id,
shared_storage);
}
collective_epilogue.store(
epilogue_params,
tOrO,
attention_updater.get_lse(),
shared_storage,
tiled_mma_pv,
threadIdx.x - NUM_COPY_THREADS,
bid,
mainloop_params.bsz,
seq_len_now,
start_token_idx,
tile_id,
seq_len_decoder_now,
mainloop_params.chunk_size,
mainloop_params.max_draft_token_num,
mainloop_params.o_stride_bsz);
}
} else {
const int block_id = blockIdx.x;
for (int i = blockIdx.x; i < num_blocks_x; i += SM_COUNT) {
clear(tOrO);
clear(attention_updater.scores_scale);
const int bid = mainloop_params.batch_ids[block_id];
const int tile_id = mainloop_params.tile_ids_per_batch[block_id];
const int bid = mainloop_params.batch_ids[i];
const int tile_id = mainloop_params.tile_ids_per_batch[i];
const int seq_len_now = mainloop_params.seq_lens_this_time[bid];
const int seq_len_encoder_now = mainloop_params.seq_lens_encoder[bid];
const int seq_len_decoder_now = mainloop_params.seq_lens_decoder[bid] + seq_len_now;
const int start_token_idx = mainloop_params.cumsum_q_seqlens[bid];
cutlass::arch::NamedBarrier::sync(Ktraits::NUM_THREADS,
@@ -429,15 +315,15 @@ MLAWithKVCacheKernel(CUTE_GRID_CONSTANT
start_token_idx,
tile_id,
seq_len_decoder_now,
mainloop_params.chunk_size,
chunk_size,
mainloop_params.max_draft_token_num,
mainloop_params.o_stride_bsz);
}
}
}
}
template <typename KernelTraits, bool CAUSAL, typename Params, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=false>
template <typename KernelTraits, bool CAUSAL, typename Params, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=true>
cudaError_t BatchMLAWithPagedKVCacheKernelTraitsDispatched(Params& params,
cudaStream_t stream) {
using DTypeQ = typename KernelTraits::DTypeQ;
@@ -460,12 +346,12 @@ cudaError_t BatchMLAWithPagedKVCacheKernelTraitsDispatched(Params& params,
params.d,
params.block_tables,
params.seq_lens_this_time,
params.seq_lens_encoder,
params.seq_lens_decoder,
params.cumsum_q_seqlens,
params.batch_ids,
params.tile_ids_per_batch,
params.num_blocks_x,
params.chunk_size_device,
params.sm_scale,
params.bsz,
params.max_block_num,
@@ -476,7 +362,6 @@ cudaError_t BatchMLAWithPagedKVCacheKernelTraitsDispatched(Params& params,
params.kv_stride_block_size,
params.o_stride_bsz,
params.o_stride_head_num,
params.chunk_size,
params.chunk_num,
params.max_draft_token_num
});
@@ -500,13 +385,9 @@ cudaError_t BatchMLAWithPagedKVCacheKernelTraitsDispatched(Params& params,
cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&act_blocks_per_sm, kernel, KernelTraits::NUM_WARPS * 32, smem_size);
int gridx;
if constexpr(USE_FIXED_BLOCK) {
gridx = multiprocessor_count;
} else {
gridx = params.num_blocks_x_int;
}
dim3 grid_dims = {gridx, 1, 1};
// NOTE: (changwenbin) Here the grid size is fixed so that MLA can be captured
// by the graph.
dim3 grid_dims = {multiprocessor_count, 1, 1};
static constexpr int ctaSize = KernelTraits::NUM_WARPS * 32;
dim3 block_dims(ctaSize, 1, 1);
kernel<<<grid_dims, block_dims, smem_size, stream>>>(
@@ -517,37 +398,38 @@ cudaError_t BatchMLAWithPagedKVCacheKernelTraitsDispatched(Params& params,
constexpr int merge_block_size = 256;
constexpr int blockx = KernelTraits::HEAD_DIM_VO / vec_size;
constexpr int blocky = (merge_block_size + blockx - 1) / blockx;
dim3 grids_merge(min(multiprocessor_count, params.token_num), params.q_num_head); // 128k is too large
dim3 grids_merge(multiprocessor_count, params.q_num_head); // 128k is too large
dim3 blocks_merge(blockx, blocky);
merge_multi_chunks_kernel<NV_TYPE, vec_size, blocky, KernelTraits::HEAD_DIM_VO><<<grids_merge, blocks_merge, 0, stream>>>(
reinterpret_cast<NV_TYPE*>(params.O_tmp),
params.m,
params.d,
params.seq_lens_this_time,
params.seq_lens_decoder,
params.seq_lens_encoder,
params.cumsum_q_seqlens,
params.batch_id_per_token,
reinterpret_cast<NV_TYPE*>(params.O),
params.chunk_num,
params.q_num_head,
params.chunk_size,
params.vo_head_dim,
params.token_num,
params.bsz,
params.max_draft_token_num
);
merge_multi_chunks_kernel<NV_TYPE,
vec_size,
blocky,
KernelTraits::HEAD_DIM_VO>
<<<grids_merge, blocks_merge, 0, stream>>>(
reinterpret_cast<NV_TYPE *>(params.O_tmp),
params.m,
params.d,
params.seq_lens_this_time,
params.seq_lens_decoder,
params.cumsum_q_seqlens,
params.batch_id_per_token,
params.chunk_size_device,
reinterpret_cast<NV_TYPE *>(params.O),
params.q_num_head,
params.vo_head_dim,
params.token_num,
params.bsz,
params.max_draft_token_num);
}
return cudaSuccess;
}
template <uint32_t HEAD_DIM_QK, uint32_t HEAD_DIM_VO, typename NV_TYPE, typename Params, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=false>
template <uint32_t HEAD_DIM_QK, uint32_t HEAD_DIM_VO, typename NV_TYPE, typename Params, bool USE_REG_EALLOC=false, bool USE_FIXED_BLOCK=true>
cudaError_t BatchMLAWithPagedKVCacheDispatched(Params& params, cudaStream_t stream) {
constexpr bool CAUSAL = true;
if constexpr (HEAD_DIM_QK == 576) {
DISPATCH_GROUP_SIZE(params.q_num_head, GROUP_SIZE,
BatchMLAWithPagedKVCacheKernelTraitsDispatched<
AttentionKernelTraits</*USE_TMA_LOAD_KV=*/false,
AttentionKernelTraits</*USE_TMA_LOAD_KV=*/true,
HEAD_DIM_QK,
HEAD_DIM_VO,
GROUP_SIZE,

View File

@@ -249,18 +249,16 @@ struct prefill_softmax_state_t {
};
template <typename T, int vec_size, uint32_t bdy, uint32_t HEAD_DIM>
__global__ void merge_multi_chunks_kernel(const T * __restrict__ multi_out, // [num_chunks, bsz, max_draft_token, num_heads, head_dim]
const float * __restrict__ multi_m, // [num_chunks, bsz, max_draft_token, num_heads]
const float * __restrict__ multi_d, // [num_chunks, bsz, max_draft_token, num_heads]
__global__ void merge_multi_chunks_kernel(const T * __restrict__ multi_out, // [max_num_chunks, bsz, max_draft_token, num_heads, head_dim]
const float * __restrict__ multi_m, // [max_num_chunks, bsz, max_draft_token, num_heads]
const float * __restrict__ multi_d, // [max_num_chunks, bsz, max_draft_token, num_heads]
const int * __restrict__ seq_lens_this_time,
const int * __restrict__ seq_lens_decoder,
const int * __restrict__ seq_lens_encoder,
const int *__restrict__ cu_seqlens_q,
const int * __restrict__ batch_id_per_token,
const int * __restrict__ chunk_size_device,
T * __restrict__ out, // [token_num, num_heads, head_dim]
const int num_chunks,
const int num_heads,
const int chunk_size,
const int head_dim,
const int token_num,
const int bsz,
@@ -271,13 +269,15 @@ __global__ void merge_multi_chunks_kernel(const T * __restrict__ multi_out, // [
__shared__ float md_smem[bdy * 2];
for (int qid = blockIdx.x; qid < token_num; qid += gridDim.x) {
const uint32_t bid = batch_id_per_token[qid];
// NOTE : (changwenbin) Batch_id_per_token is initialized to [:]=-1, Marking meaningless batch IDs.
if (bid == -1) continue;
const int seq_len_q = seq_lens_this_time[bid];
if (seq_len_q == 0) continue;
const uint32_t local_seq_id = qid - cu_seqlens_q[bid];
int seq_len_kv = seq_lens_decoder[bid];
if (seq_len_kv == 0) continue;
seq_len_kv += seq_len_q;
const int num_chunks_this_seq = cute::ceil_div(seq_len_kv, chunk_size);
const int num_chunks_this_seq = cute::ceil_div(seq_len_kv, chunk_size_device[0]);
if (num_chunks_this_seq <= 1) {
// not need merge
continue;

View File

@@ -33,6 +33,11 @@
__VA_ARGS__ \
break; \
} \
case 3: { \
constexpr size_t NUM_EXPERTS_PER_RANK = 3; \
__VA_ARGS__ \
break; \
} \
case 6: { \
constexpr size_t NUM_EXPERTS_PER_RANK = 6; \
__VA_ARGS__ \
@@ -448,137 +453,71 @@ void EPMoeDispatchKernel(const paddle::Tensor& input,
auto place = input.place();
const int gridx = min(132 * 8, num_rows);
if (moe_quant_type == "w4a8") {
if (num_experts_per_rank == 8) {
permute_x_kernel<data_t, int8_t, 8><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<int8_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);
} else if (num_experts_per_rank == 16) {
permute_x_kernel<data_t, int8_t, 16><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<int8_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);
}
DISPATCH_NUM_EXPERTS_PER_RANK(num_experts_per_rank, NUM_EXPERTS_PER_RANK,
permute_x_kernel<data_t, int8_t, NUM_EXPERTS_PER_RANK><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<int8_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);)
} else if (moe_quant_type == "w4afp8") {
if (num_experts_per_rank == 8) {
permute_x_kernel<data_t, data_t_fp8, 8, 512><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t_fp8>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
448.0f,
-448.0f
);
} else if (num_experts_per_rank == 16) {
permute_x_kernel<data_t, data_t_fp8, 16, 512><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t_fp8>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
448.0f,
-448.0f
);
}
DISPATCH_NUM_EXPERTS_PER_RANK(num_experts_per_rank, NUM_EXPERTS_PER_RANK,
permute_x_kernel<data_t, data_t_fp8, NUM_EXPERTS_PER_RANK, 512><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t_fp8>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
448.0f,
-448.0f
);)
} else {
if (num_experts_per_rank == 8) {
permute_x_kernel<data_t, data_t, 8><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);
} else if (num_experts_per_rank == 16) {
permute_x_kernel<data_t, data_t, 16><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);
}
DISPATCH_NUM_EXPERTS_PER_RANK(num_experts_per_rank, NUM_EXPERTS_PER_RANK,
permute_x_kernel<data_t, data_t, NUM_EXPERTS_PER_RANK><<<gridx, 512, 0, stream>>>(
input.data<data_t>(),
topk_ids.data<int64_t>(),
topk_weights.data<float>(),
token_nums_per_expert.data<int>(),
up_gate_proj_in_scale ? up_gate_proj_in_scale.get().data<float>() : nullptr,
moe_topk,
num_rows,
token_nums_this_rank,
hidden_size,
permute_input->data<data_t>(),
permute_indices_per_token->data<int>(),
dst_weights->data<float>(),
dst_indices->data<int>(),
cumsum_idx_gpu->data<int>(),
token_nums_per_expert_cumsum->data<int64_t>(),
expert_idx_per_token->data<int64_t>(),
127.0,
-127.0
);)
}
}

View File

@@ -236,7 +236,7 @@ public:
num_experts, k, stream);
}
topk_gating_softmax_kernelLauncher<float, int>::run(
topk_gating_softmax_kernelLauncher<float, int>(
gating_output, nullptr, expert_scales_float, softmax_out_,
expert_for_source_row, source_rows_, softmax_max_prob, num_rows,
num_experts, k, group_moe, stream);
@@ -248,7 +248,7 @@ public:
permuted_experts_, source_rows_, permuted_rows_, k * num_rows,
false, stream);
initialize_moe_routing_kernelLauncher<T>::run(
initialize_moe_routing_kernelLauncher(
input_activations, permuted_data_, permuted_rows_, nullptr, nullptr,
expanded_source_row_to_expanded_dest_row, num_rows, num_rows,
hidden_size, k, stream);
@@ -335,14 +335,14 @@ public:
num_experts, down_proj_quant_args, stream);
}
finalize_moe_routing_kernelLauncher<T>::run(
finalize_moe_routing_kernelLauncher(
fc2_result, output_, fc2_expert_biases,
reinterpret_cast<float *>(expert_scales_float),
expanded_source_row_to_expanded_dest_row, expert_for_source_row,
num_rows, hidden_size, k, static_cast<int>(1), norm_topk_prob,
routed_scaling_factor, stream);
} else {
finalize_moe_routing_kernelLauncher<T>::run(
finalize_moe_routing_kernelLauncher(
// fc2_result,
fc1_out, output_,
fc1_expert_biases, // fc2_expert_biases,

View File

@@ -1139,9 +1139,7 @@ void topk_gating_softmax_launcher_helper(const T* input,
}
template <typename T, typename IdxT = int>
struct topk_gating_softmax_kernelLauncher{
static void run(const T* input,
void topk_gating_softmax_kernelLauncher(const T* input,
const T* gating_correction_bias,
T* output,
T* softmax,
@@ -1221,7 +1219,6 @@ static void run(const T* input,
}
}
}
};
// ========================== Permutation things
// =======================================
@@ -1316,9 +1313,7 @@ __global__ void initialize_moe_routing_kernel(
}
template <typename T, typename OutT = T>
struct initialize_moe_routing_kernelLauncher{
static void run(
void initialize_moe_routing_kernelLauncher(
const T* unpermuted_input,
OutT* permuted_output,
const int* expanded_dest_row_to_expanded_source_row,
@@ -1361,7 +1356,6 @@ static void run(
num_rows * k);
}
}
};
// ============================== Infer GEMM sizes
// =================================
@@ -1472,8 +1466,7 @@ __global__ void finalize_moe_routing_kernel(
}
template <typename T>
struct finalize_moe_routing_kernelLauncher{
static void run(
void finalize_moe_routing_kernelLauncher(
const T* expanded_permuted_rows,
T* reduced_unpermuted_output,
const T* bias,
@@ -1505,5 +1498,4 @@ static void run(
routed_scaling_factor,
num_rows);
}
};
} // namespace phi

View File

@@ -36,6 +36,9 @@ void MoeDispatchKernel(
paddle::Tensor *topk_idx, paddle::Tensor *expert_idx_per_token) {
using namespace phi;
if (num_rows == 0){
return;
}
typedef PDTraits<T> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
@@ -100,7 +103,7 @@ void MoeDispatchKernel(
softmax_out_ = nullptr;
}
topk_gating_softmax_kernelLauncher<float, int>::run(
topk_gating_softmax_kernelLauncher(
gating_output.data<float>(),
gating_correction_bias ? gating_correction_bias.get().data<float>()
: nullptr,
@@ -114,13 +117,13 @@ void MoeDispatchKernel(
if (w4a8_in_scale) {
if (permute_input->dtype() == paddle::DataType::INT8) {
initialize_moe_routing_kernelLauncher<data_t, int8_t>::run(
initialize_moe_routing_kernelLauncher(
input.data<data_t>(), permute_input->data<int8_t>(), permuted_rows_,
expert_idx_per_token->data<int32_t>(), w4a8_in_scale->data<float>(),
permute_indices_per_token->data<int32_t>(), num_rows, num_rows,
hidden_size, moe_topk, stream);
} else if (permute_input->dtype() == paddle::DataType::FLOAT8_E4M3FN) {
initialize_moe_routing_kernelLauncher<data_t, float8_e4m3fn>::run(
initialize_moe_routing_kernelLauncher(
input.data<data_t>(), permute_input->data<float8_e4m3fn>(),
permuted_rows_, expert_idx_per_token->data<int32_t>(),
w4a8_in_scale->data<float>(),
@@ -128,7 +131,7 @@ void MoeDispatchKernel(
hidden_size, moe_topk, stream);
}
} else {
initialize_moe_routing_kernelLauncher<data_t>::run(
initialize_moe_routing_kernelLauncher(
input.data<data_t>(), permute_input->data<data_t>(), permuted_rows_,
expert_idx_per_token->data<int32_t>(), nullptr,
permute_indices_per_token->data<int32_t>(), num_rows, num_rows,
@@ -185,6 +188,15 @@ std::vector<paddle::Tensor> MoeExpertDispatch(
auto expert_idx_per_token =
GetEmptyTensor({num_rows * moe_topk}, paddle::DataType::INT32, place);
if (token_rows == 0){
return {permute_input,
tokens_expert_prefix_sum,
permute_indices_per_token,
topk_weight,
topk_idx,
expert_idx_per_token};
}
switch (input_type) {
case paddle::DataType::BFLOAT16:
MoeDispatchKernel<paddle::DataType::BFLOAT16>(

View File

@@ -412,7 +412,9 @@ const auto t_type = (quant_method == "w4a8") ? up_gate_proj_scale.get().dtype()
(quant_method == "w4afp8") ? paddle::DataType::BFLOAT16 :
permute_input.dtype();
auto ffn_out = paddle::empty_like(permute_input, t_type);
if(permute_input.numel() == 0){
return ffn_out;
}
switch (t_type) {
case paddle::DataType::BFLOAT16:
MoeFFNKernel<paddle::DataType::BFLOAT16>(permute_input,

View File

@@ -36,7 +36,7 @@ void MoeReduceKernel(const paddle::Tensor &ffn_out,
typedef typename traits_::data_t data_t;
auto stream = ffn_out.stream();
finalize_moe_routing_kernelLauncher<data_t>::run(
finalize_moe_routing_kernelLauncher(
ffn_out.data<data_t>(), output->data<data_t>(),
down_proj_bias ? down_proj_bias->data<data_t>() : nullptr,
top_k_weight.data<float>(), permute_indices_per_token.data<int32_t>(),
@@ -59,6 +59,10 @@ paddle::Tensor MoeExpertReduceFunc(
auto output = GetEmptyTensor({num_rows, hidden_size}, input_type, place);
if(num_rows == 0){
return output;
}
switch (input_type) {
case paddle::DataType::BFLOAT16:
MoeReduceKernel<paddle::DataType::BFLOAT16>(

View File

@@ -22,23 +22,18 @@ std::vector<paddle::Tensor> MultiHeadLatentAttentionKernel(
const paddle::Tensor& query,
const paddle::Tensor& key_cache,
const paddle::Tensor& value_cache,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
const paddle::Tensor& encoder_batch_ids,
const paddle::Tensor& encoder_tile_ids_per_batch,
const paddle::Tensor& encoder_num_blocks,
const paddle::Tensor& kv_batch_ids,
const paddle::Tensor& kv_tile_ids_per_batch,
const paddle::Tensor& kv_num_blocks,
const paddle::Tensor& decoder_batch_ids,
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& decoder_num_blocks_cpu,
const paddle::Tensor& max_enc_len_this_time,
const paddle::Tensor& decoder_chunk_size_device,
const paddle::Tensor& max_dec_len_this_time,
const paddle::Tensor& max_len_kv,
const paddle::optional<paddle::Tensor>& attn_mask,
@@ -64,9 +59,12 @@ std::vector<paddle::Tensor> MultiHeadLatentAttentionKernel(
typedef PDTraits<D> traits_;
typedef typename traits_::data_t data_t;
int decoder_num_blocks_data = decoder_num_blocks_cpu.data<int>()[0];
// NOTE: (changwenbin) In cuda graph, it will be fixed in the capture stage
// int decoder_num_blocks_data = decoder_num_blocks_cpu.data<int>()[0];
int max_dec_len_this_time_data = max_dec_len_this_time.data<int>()[0];
int max_len_kv_data = max_len_kv.data<int>()[0];
// int chunk_size = decoder_chunk_size_cpu.data<int>()[0];
//
const bool mla_use_tensorcore = get_mla_use_tensorcore();
auto sm_version = GetSMVersion();
@@ -96,7 +94,6 @@ std::vector<paddle::Tensor> MultiHeadLatentAttentionKernel(
out_linear_smooths,
seq_lens_this_time,
seq_lens_decoder,
seq_lens_encoder,
cu_seqlens_q,
batch_id_per_token,
block_tables,
@@ -104,9 +101,8 @@ std::vector<paddle::Tensor> MultiHeadLatentAttentionKernel(
decoder_tile_ids_per_batch,
decoder_num_blocks,
cache_quant_type_str,
decoder_num_blocks_data,
decoder_chunk_size_device,
max_input_length,
max_len_kv_data,
softmax_scale,
quant_max_bound,
quant_min_bound,
@@ -145,23 +141,18 @@ std::vector<paddle::Tensor> MultiHeadLatentAttention(
const paddle::Tensor& query,
const paddle::Tensor& key_cache,
const paddle::Tensor& value_cache,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& block_tables,
const paddle::Tensor& encoder_batch_ids,
const paddle::Tensor& encoder_tile_ids_per_batch,
const paddle::Tensor& encoder_num_blocks,
const paddle::Tensor& kv_batch_ids,
const paddle::Tensor& kv_tile_ids_per_batch,
const paddle::Tensor& kv_num_blocks,
const paddle::Tensor& decoder_batch_ids,
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& decoder_num_blocks_cpu,
const paddle::Tensor& max_enc_len_this_time,
const paddle::Tensor& decoder_chunk_size_device,
const paddle::Tensor& max_dec_len_this_time,
const paddle::Tensor& max_len_kv,
const paddle::optional<paddle::Tensor>& attn_mask,
@@ -208,23 +199,18 @@ std::vector<paddle::Tensor> MultiHeadLatentAttention(
query,
key_cache,
value_cache,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
cu_seqlens_q,
batch_id_per_token,
block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
decoder_batch_ids,
decoder_tile_ids_per_batch,
decoder_num_blocks,
decoder_num_blocks_cpu,
max_enc_len_this_time,
decoder_chunk_size_device,
max_dec_len_this_time,
max_len_kv,
attn_mask,
@@ -254,23 +240,18 @@ std::vector<paddle::Tensor> MultiHeadLatentAttention(
query,
key_cache,
value_cache,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
cu_seqlens_q,
batch_id_per_token,
block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
decoder_batch_ids,
decoder_tile_ids_per_batch,
decoder_num_blocks,
decoder_num_blocks_cpu,
max_enc_len_this_time,
decoder_chunk_size_device,
max_dec_len_this_time,
max_len_kv,
attn_mask,
@@ -307,23 +288,18 @@ std::vector<std::vector<int64_t>> MultiHeadLatentAttentionInferShape(
const std::vector<int64_t>& query_shape,
const std::vector<int64_t>& key_cache_shape,
const std::vector<int64_t>& value_cache_shape,
const std::vector<int64_t>& seq_lens_encoder_shape,
const std::vector<int64_t>& seq_lens_decoder_shape,
const std::vector<int64_t>& seq_lens_this_time_shape,
const std::vector<int64_t>& cu_seqlens_q_shape,
const std::vector<int64_t>& batch_id_per_token_shape,
const std::vector<int64_t>& block_tables_shape,
const std::vector<int64_t>& encoder_batch_ids_shape,
const std::vector<int64_t>& encoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& encoder_num_blocks_shape,
const std::vector<int64_t>& kv_batch_ids_shape,
const std::vector<int64_t>& kv_tile_ids_per_batch_shape,
const std::vector<int64_t>& kv_num_blocks_shape,
const std::vector<int64_t>& decoder_batch_ids_shape,
const std::vector<int64_t>& decoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& decoder_num_blocks_shape,
const std::vector<int64_t>& decoder_num_blocks_cpu_shape,
const std::vector<int64_t>& max_enc_len_this_time_shape,
const std::vector<int64_t>& decoder_chunk_size_device_shape,
const std::vector<int64_t>& max_dec_len_this_time_shape,
const std::vector<int64_t>& max_len_kv_shape,
const paddle::optional<std::vector<int64_t>>& attn_mask_shape,
@@ -361,23 +337,18 @@ std::vector<paddle::DataType> MultiHeadLatentAttentionInferDtype(
const paddle::DataType& query_dtype,
const paddle::DataType& key_cache_dtype,
const paddle::DataType& value_cache_dtype,
const paddle::DataType& seq_lens_encoder_dtype,
const paddle::DataType& seq_lens_decoder_dtype,
const paddle::DataType& seq_lens_this_time_dtype,
const paddle::DataType& cu_seqlens_q_dtype,
const paddle::DataType& batch_id_per_token_dtype,
const paddle::DataType& block_tables_dtype,
const paddle::DataType& encoder_batch_ids_dtype,
const paddle::DataType& encoder_tile_ids_per_batch_dtype,
const paddle::DataType& encoder_num_blocks_dtype,
const paddle::DataType& kv_batch_ids_dtype,
const paddle::DataType& kv_tile_ids_per_batch_dtype,
const paddle::DataType& kv_num_blocks_dtype,
const paddle::DataType& decoder_batch_ids_dtype,
const paddle::DataType& decoder_tile_ids_per_batch_dtype,
const paddle::DataType& decoder_num_blocks_dtype,
const paddle::DataType& decoder_num_blocks_cpu_dtype,
const paddle::DataType& max_enc_len_this_time_dtype,
const paddle::DataType& decoder_chunk_size_device_dtype,
const paddle::DataType& max_dec_len_this_time_dtype,
const paddle::DataType& max_len_kv_dtype,
const paddle::optional<paddle::DataType>& attn_mask_dtype,
@@ -415,23 +386,18 @@ PD_BUILD_STATIC_OP(multi_head_latent_attention)
.Inputs({"query",
"key_cache",
"value_cache",
"seq_lens_encoder",
"seq_lens_decoder",
"seq_lens_this_time",
"cu_seqlens_q",
"batch_id_per_token",
"block_tables",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",
"encoder_num_blocks",
"kv_batch_ids",
"kv_tile_ids_per_batch",
"kv_num_blocks",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks",
"decoder_num_blocks_cpu",
"max_enc_len_this_time",
"decoder_chunk_size_device",
"max_dec_len_this_time",
"max_len_kv",
paddle::Optional("attn_mask"),

View File

@@ -59,7 +59,7 @@ __global__ void text_image_scatter_kernel(
constexpr int HalfVecSize = VecSize / 2;
using T_Vec = AlignedVector<T, VecSize>;
T_Vec input_ptr_vec;
T_Vec text_imgaes_vec;
T_Vec text_images_vec;
int64_t global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
const int64_t step = blockDim.x * gridDim.x * VecSize;
@@ -76,16 +76,20 @@ __global__ void text_image_scatter_kernel(
Load<T, VecSize>(input_ptr + input_load_offset, &input_ptr_vec);
#pragma unroll
for(int vi = 0; vi < VecSize; ++vi) {
text_imgaes_vec[vi] = input_ptr_vec[vi];
text_images_vec[vi] = input_ptr_vec[vi];
}
if (token_type_ids_num == 0) {
int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset;
Store<T,VecSize>(text_imgaes_vec, text_gather_ptr + text_load_offset);
Store<T,VecSize>(text_images_vec, text_gather_ptr + text_load_offset);
} else if(token_type_ids_num == 1){
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset;
Store<T,VecSize>(text_images_vec, image_gather_ptr + image_load_offset);
} else {
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset;
Store<T,VecSize>(text_imgaes_vec, image_gather_ptr + image_load_offset);
// skip cuda graph padding value
continue;
}
}
}
@@ -120,9 +124,12 @@ __global__ void text_image_gather_kernel(
int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset;
Load<T,VecSize>(text_gather_ptr + text_load_offset, &text_imgaes_vec);
} else {
} else if (token_type_ids_num == 1){
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset;
Load<T,VecSize>(image_gather_ptr + image_load_offset, &text_imgaes_vec);
} else {
// skip cuda graph padding value
continue;
}
#pragma unroll
@@ -154,7 +161,6 @@ void LaunchTextImageGatherScatter(
const int64_t token_num = in_dims[0];
const int64_t hidden_size = in_dims[1];
const int VecSize = 16 / sizeof(data_t);
const int64_t tot_element_num = token_num * hidden_size;
@@ -168,7 +174,7 @@ void LaunchTextImageGatherScatter(
PADDLE_ENFORCE_GPU_SUCCESS(GetGridSize(tot_pack_num, block_size, kNumWaves, &grid_size_x));
dim3 grid_dim = dim3(grid_size_x, 1, 1);
if (is_scatter) {
text_image_scatter_kernel<DataType_, 8><<<grid_dim, block_size>>>(
text_image_scatter_kernel<DataType_, VecSize><<<grid_dim, block_size, 0, stream>>>(
reinterpret_cast<DataType_*>(input.data<data_t>()),
reinterpret_cast<DataType_*>(text_input.data<data_t>()),
reinterpret_cast<DataType_*>(image_input.data<data_t>()),
@@ -179,7 +185,7 @@ void LaunchTextImageGatherScatter(
tot_element_num
);
} else {
text_image_gather_kernel<DataType_, 8><<<grid_dim, block_size>>>(
text_image_gather_kernel<DataType_, VecSize><<<grid_dim, block_size, 0, stream>>>(
reinterpret_cast<DataType_*>(input.data<data_t>()),
reinterpret_cast<DataType_*>(text_input.data<data_t>()),
reinterpret_cast<DataType_*>(image_input.data<data_t>()),

View File

@@ -16,7 +16,7 @@
template <int VecSize>
__global__ void text_image_index_out_kernel(
int32_t* token_type_ids,
const int32_t* token_type_ids,
int32_t* text_index,
int32_t* image_index,
const int64_t token_num
@@ -31,23 +31,27 @@ __global__ void text_image_index_out_kernel(
if (token_type_ids[i] == 0) {
text_index[i] = text_count;
text_count += 1;
} else {
} else if (token_type_ids[i] == 1) {
image_index[i] = images_count;
images_count += 1;
} else {
// skip cuda graph padding value
continue;
}
}
}
void TextImageIndexOut(
const paddle::Tensor& token_type_ids,
const paddle::Tensor& text_index,
const paddle::Tensor& image_index) {
paddle::Tensor& text_index,
paddle::Tensor& image_index) {
const int64_t token_num = token_type_ids.shape()[0];
text_image_index_out_kernel<1><<<1, 1>>>(
const_cast<int32_t*>(token_type_ids.data<int32_t>()),
const_cast<int32_t*>(text_index.data<int32_t>()),
const_cast<int32_t*>(image_index.data<int32_t>()),
auto stream = token_type_ids.stream();
text_image_index_out_kernel<1><<<1, 1, 0, stream>>>(
token_type_ids.data<int32_t>(),
text_index.data<int32_t>(),
image_index.data<int32_t>(),
token_num
);
}

View File

@@ -32,7 +32,8 @@ __global__ void update_inputs_kernel_v1(bool *not_need_stop,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size) {
const int block_size,
bool prefill_one_step_stop) {
int thread_idx = threadIdx.x;
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
@@ -54,23 +55,32 @@ __global__ void update_inputs_kernel_v1(bool *not_need_stop,
seq_lens_encoder[thread_idx] = 0;
} else {
if (seq_lens_this_time[thread_idx] + seq_lens_decoder[thread_idx] >= prompt_lens[thread_idx]) {
// decoding
seq_lens_decoder[thread_idx] += seq_lens_this_time[thread_idx];
seq_lens_this_time[thread_idx] = 1;
seq_lens_encoder[thread_idx] = 0;
int64_t *input_ids_now = input_ids + thread_idx * input_ids_stride;
input_ids_now[0] = next_tokens[thread_idx];
if (prefill_one_step_stop) {
// prefill done, stop
stop_flags[thread_idx] = true;
seq_lens_this_time[thread_idx] = 0;
seq_lens_decoder[thread_idx] = 0;
seq_lens_encoder[thread_idx] = 0;
stop_flag_now_int = 1;
} else{
// decoding
seq_lens_decoder[thread_idx] += seq_lens_this_time[thread_idx];
seq_lens_this_time[thread_idx] = 1;
seq_lens_encoder[thread_idx] = 0;
int64_t *input_ids_now = input_ids + thread_idx * input_ids_stride;
input_ids_now[0] = next_tokens[thread_idx];
// to judge whether block is not enough
int *block_table_now = block_tables + thread_idx * block_num_per_seq;
if (seq_lens_this_time[thread_idx] != 0 && block_table_now[seq_lens_decoder[thread_idx] / block_size] == -1) {
// should be scheduled by server
is_block_step[thread_idx] = true;
seq_lens_this_time[thread_idx]= 0;
stop_flags[thread_idx] = true;
step_seq_lens_decoder[thread_idx] = seq_lens_decoder[thread_idx];
seq_lens_decoder[thread_idx] = 0;
stop_flag_now_int = 1;
// to judge whether block is not enough
int *block_table_now = block_tables + thread_idx * block_num_per_seq;
if (seq_lens_this_time[thread_idx] != 0 && block_table_now[seq_lens_decoder[thread_idx] / block_size] == -1) {
// should be scheduled by server
is_block_step[thread_idx] = true;
seq_lens_this_time[thread_idx]= 0;
stop_flags[thread_idx] = true;
step_seq_lens_decoder[thread_idx] = seq_lens_decoder[thread_idx];
seq_lens_decoder[thread_idx] = 0;
stop_flag_now_int = 1;
}
}
} else
{
@@ -110,6 +120,12 @@ void UpdateInputesV1(const paddle::Tensor &stop_flags,
#else
auto cu_stream = input_ids.stream();
#endif
bool prefill_one_step_stop = false;
if (const char *env_p = std::getenv("PREFILL_NODE_ONE_STEP_STOP_V1")) {
if (env_p[0] == '1') {
prefill_one_step_stop = true;
}
}
const int max_bsz = stop_flags.shape()[0];
const int now_bsz = seq_lens_this_time.shape()[0];
const int input_ids_stride = input_ids.shape()[1];
@@ -133,7 +149,8 @@ void UpdateInputesV1(const paddle::Tensor &stop_flags,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size);
block_size,
prefill_one_step_stop);
auto not_need_stop_cpu =
not_need_stop_gpu.copy_to(not_need_stop.place(), false);
bool *not_need_stop_data = const_cast<bool *>(not_need_stop.data<bool>());

View File

@@ -37,6 +37,52 @@ def load_module_from_path(module_name, path):
return module
def update_git_repo():
try:
print("update third party repo...", flush=True)
original_dir = os.getcwd()
submodule_dir = os.path.dirname(os.path.abspath(__file__))
third_party_path = os.path.join(submodule_dir, "third_party")
root_path = Path(third_party_path)
# check if third_party is empty
update_third_party = False
for dirpath in root_path.iterdir():
if dirpath.is_dir():
has_content = any(dirpath.iterdir())
if not has_content:
update_third_party = True
if update_third_party:
os.chdir(submodule_dir)
subprocess.run(
"git submodule sync --recursive && git submodule update --init --recursive",
shell=True,
check=True,
text=True,
)
else:
print(
"\033[33m[===WARNING===]third_party directory already exists, skip clone and update.\033[0m",
flush=True,
)
# apply deep gemm patch
deep_gemm_dir = "third_party/DeepGEMM"
dst_path = os.path.join(submodule_dir, deep_gemm_dir)
patch = "0001-DeepGEMM-95e81b3.patch"
patch_source = os.path.join(submodule_dir, patch)
patch_destination = os.path.join(dst_path, patch)
if not os.path.exists(patch_destination):
shutil.copy(patch_source, patch_destination)
apply_cmd = ["git", "apply", patch]
os.chdir(dst_path)
subprocess.run(apply_cmd, check=True)
os.chdir(original_dir)
except subprocess.CalledProcessError:
raise Exception("Git submodule update and apply patch failed. Maybe network connection is poor.")
ROOT_DIR = Path(__file__).parent.parent
# cannot import envs directly because it depends on fastdeploy,
@@ -46,6 +92,8 @@ envs = load_module_from_path("envs", os.path.join(ROOT_DIR, "fastdeploy", "envs.
archs = json.loads(envs.FD_BUILDING_ARCS)
use_bf16 = envs.FD_CPU_USE_BF16 == "True"
update_git_repo()
def download_and_extract(url, destination_directory):
"""
@@ -78,52 +126,6 @@ def download_and_extract(url, destination_directory):
print(f"Error extracting file: {e}")
def clone_git_repo(version, repo_url, destination_path):
"""
Clone git repo to destination path.
"""
try:
subprocess.run(
[
"git",
"clone",
"-b",
version,
"--single-branch",
repo_url,
destination_path,
],
check=True,
)
return True
except subprocess.CalledProcessError:
return False
def process_git_repo(cur_path, dst_path, commit_id=None, patch=None):
"""
reset git repo to destination commit and apply patch.
"""
if commit_id is not None:
reset_cmd = ["git", "reset", "--hard", commit_id]
if patch is not None:
patch_source = os.path.join(cur_path, patch)
patch_destination = os.path.join(dst_path, patch)
shutil.copy(patch_source, patch_destination)
apply_cmd = ["git", "apply", patch]
try:
os.chdir(dst_path)
if commit_id is not None:
subprocess.run(reset_cmd, check=True)
if patch is not None:
subprocess.run(apply_cmd, check=True)
os.chdir(cur_path)
return True
except subprocess.CalledProcessError:
return False
def get_sm_version(archs):
"""
Get sm version of paddle.
@@ -191,13 +193,6 @@ def find_end_files(directory, end_str):
if paddle.is_compiled_with_rocm():
# NOTE(@duanyanhui): paddle.is_compiled_with_cuda() returns True when paddle compiled with rocm.
# so we need to check if paddle compiled with rocm at first.
json_dir = "third_party/nlohmann_json"
if not os.path.exists(json_dir) or not os.listdir(json_dir):
if not os.path.exists(json_dir):
os.makedirs(json_dir)
clone_git_repo("v3.11.3", "https://bgithub.xyz/nlohmann/json.git", json_dir)
if not os.listdir(json_dir):
raise ValueError("Git clone nlohmann_json failed!")
sources = [
"gpu_ops/save_with_output_msg.cc",
"gpu_ops/get_output.cc",
@@ -316,28 +311,6 @@ elif paddle.is_compiled_with_cuda():
"gpu_ops/ipc_sent_key_value_cache_by_remote_ptr.cu",
]
cutlass_dir = "third_party/cutlass"
if not os.path.exists(cutlass_dir) or not os.listdir(cutlass_dir):
if not os.path.exists(cutlass_dir):
os.makedirs(cutlass_dir)
clone_git_repo("v3.8.0", "https://github.com/NVIDIA/cutlass.git", cutlass_dir)
if not os.listdir(cutlass_dir):
raise ValueError("Git clone cutlass failed!")
# deep gemm
deep_gemm_dir = "third_party/DeepGEMM"
if not os.path.exists(deep_gemm_dir) or not os.listdir(deep_gemm_dir):
if not os.path.exists(deep_gemm_dir):
os.makedirs(deep_gemm_dir)
clone_git_repo("main", "https://github.com/deepseek-ai/DeepGEMM.git", deep_gemm_dir)
if not os.listdir(deep_gemm_dir):
raise ValueError("Git clone DeepGEMM failed!")
cur_path = os.path.dirname(os.path.abspath(__file__))
dst_path = os.path.join(cur_path, deep_gemm_dir)
commit_id = "95e81b3dd6704e279e5f4757c5b94776ac988a8d"
patch = "0001-DeepGEMM-95e81b3.patch"
process_git_repo(cur_path, dst_path, commit_id, patch)
dg_third_party_include_dirs = (
"third_party/cutlass/include/cute",
"third_party/cutlass/include/cutlass",
@@ -365,14 +338,6 @@ elif paddle.is_compiled_with_cuda():
except Exception as e:
raise RuntimeError(f"Failed to copy from {src_dir} to {dst_dir}: {e}")
json_dir = "third_party/nlohmann_json"
if not os.path.exists(json_dir) or not os.listdir(json_dir):
if not os.path.exists(json_dir):
os.makedirs(json_dir)
clone_git_repo("v3.11.3", "https://github.com/nlohmann/json.git", json_dir)
if not os.listdir(json_dir):
raise ValueError("Git clone nlohmann_json failed!")
cc_compile_args = []
nvcc_compile_args = get_gencode_flags(archs)
nvcc_compile_args += ["-DPADDLE_DEV"]
@@ -542,7 +507,7 @@ elif paddle.is_compiled_with_cuda():
include_package_data=True,
)
elif paddle.is_compiled_with_xpu():
assert False, "In XPU, we should use setup_ops.py in xpu_ops/src, not this."
assert False, "For XPU, please use setup_ops.py in the xpu_ops directory to compile custom ops."
elif paddle.is_compiled_with_custom_device("iluvatar_gpu"):
setup(
name="fastdeploy_ops",
@@ -593,13 +558,6 @@ elif paddle.is_compiled_with_custom_device("gcu"):
)
elif paddle.device.is_compiled_with_custom_device("metax_gpu"):
maca_path = os.getenv("MACA_PATH", "/opt/maca")
json_dir = "third_party/nlohmann_json"
if not os.path.exists(json_dir) or not os.listdir(json_dir):
if not os.path.exists(json_dir):
os.makedirs(json_dir)
clone_git_repo("v3.11.3", "https://gitee.com/learnlov/mirrors_nlohmann_json.git", json_dir)
if not os.listdir(json_dir):
raise ValueError("Git clone nlohmann_json failed!")
sources = [
"gpu_ops/update_inputs_v1.cu",
"gpu_ops/save_with_output_msg.cc",

View File

@@ -27,7 +27,7 @@ import paddle
from paddle.utils.cpp_extension import CppExtension, setup
current_file = Path(__file__).resolve()
base_dir = current_file.parent
base_dir = os.path.join(current_file.parent, "src")
def build_plugin(CLANG_PATH, XRE_INC_DIR, XRE_LIB_DIR, XDNN_INC_DIR, XDNN_LIB_DIR):
@@ -136,33 +136,8 @@ def xpu_setup_ops():
# build plugin
build_plugin(CLANG_PATH, XRE_INC_PATH, XRE_LIB_DIR, XDNN_INC_PATH, XDNN_LIB_DIR)
ops = [
# custom ops
"./ops/save_with_output_msg.cc",
"./ops/stop_generation_multi_ends.cc",
"./ops/set_value_by_flags_and_idx.cc",
"./ops/get_token_penalty_multi_scores.cc",
"./ops/get_padding_offset.cc",
"./ops/update_inputs.cc",
"./ops/recover_decode_task.cc",
"./ops/update_inputs_v1.cc",
"./ops/get_output.cc",
"./ops/step.cc",
"./ops/get_infer_param.cc",
"./ops/adjust_batch.cc",
"./ops/gather_next_token.cc",
"./ops/block_attn.cc",
"./ops/moe_layer.cc",
"./ops/weight_quantize_xpu.cc",
# device manage ops
"./ops/device/get_context_gm_max_mem_demand.cc",
"./ops/device/get_free_global_memory.cc",
"./ops/device/get_total_global_memory.cc",
"./ops/device/get_used_global_memory.cc",
]
ops = [os.path.join(base_dir, op) for op in ops]
for root, dirs, files in os.walk(base_dir / "ops/mtp_ops"):
ops = []
for root, dirs, files in os.walk(os.path.join(base_dir, "ops")):
for file in files:
if file.endswith(".cc"):
ops.append(os.path.join(root, file))

View File

@@ -0,0 +1,225 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <infer_ops.h>
#include <functional>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
#include "utility/env.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
XPU_DECLARE_BOOL(ENABLE_XVLLM_SDNN_INFER, false);
namespace api = baidu::xpu::api;
template <typename T>
std::vector<paddle::Tensor> RmsNormKernel(
const paddle::Tensor& x,
const paddle::optional<paddle::Tensor>& bias,
const paddle::optional<paddle::Tensor>& residual,
const paddle::Tensor& norm_weight,
const paddle::optional<paddle::Tensor>& norm_bias,
const float epsilon,
const int begin_norm_axis,
const float quant_scale,
const int quant_round_type,
const float quant_max_bound,
const float quant_min_bound) {
using XPU_T = typename XPUTypeTrait<T>::Type;
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
int ret = -1;
auto x_shape = x.shape();
PD_CHECK(quant_scale <= 0, "Quantization is not supported");
PD_CHECK(begin_norm_axis > 0 && begin_norm_axis <= x_shape.size(),
"begin_norm_axis check fail");
PD_CHECK(norm_bias.get_ptr() == nullptr,
"rms norm kernel don't support norm_bias");
int64_t m = std::accumulate(x_shape.begin(),
x_shape.begin() + begin_norm_axis,
static_cast<int64_t>(1),
std::multiplies<int64_t>());
int64_t n = std::accumulate(x_shape.begin() + begin_norm_axis,
x_shape.end(),
static_cast<int64_t>(1),
std::multiplies<int64_t>());
PD_CHECK(n == norm_weight.shape()[0],
"The product from begin_norm_axis to the last axis of x must be "
"equal to the norm_weight's shape[0]");
if (bias.get_ptr()) {
PD_CHECK(n == bias.get_ptr()->shape()[0],
"The product from begin_norm_axis to the last axis of x must be "
"equal to the bias's shape[0]");
}
paddle::Tensor out = paddle::empty(x_shape, x.dtype(), x.place());
paddle::Tensor residual_out = paddle::empty(x_shape, x.dtype(), x.place());
const XPU_T* x_data = reinterpret_cast<const XPU_T*>(x.data<T>());
const XPU_T* norm_weight_data =
reinterpret_cast<const XPU_T*>(norm_weight.data<T>());
const XPU_T* bias_data =
bias.get_ptr() ? reinterpret_cast<const XPU_T*>(bias.get_ptr()->data<T>())
: nullptr;
const XPU_T* residual_data =
residual.get_ptr()
? reinterpret_cast<const XPU_T*>(residual.get_ptr()->data<T>())
: nullptr;
XPU_T* out_data = reinterpret_cast<XPU_T*>(const_cast<T*>(out.data<T>()));
XPU_T* residual_out_data = nullptr;
if (residual_data) {
residual_out_data =
reinterpret_cast<XPU_T*>(const_cast<T*>(residual_out.data<T>()));
}
XPU_T* add_out_data = const_cast<XPU_T*>(x_data);
if (bias_data) {
ret = api::broadcast_add(
xpu_ctx->x_context(), x_data, bias_data, out_data, {m, n}, {n});
PD_CHECK(ret == 0, "broadcast_add");
add_out_data = out_data;
}
bool use_sdnn = FLAGS_ENABLE_XVLLM_SDNN_INFER;
if (residual_data) {
ret = infer_ops::add_rms_layer_norm<XPU_T, XPU_T>(xpu_ctx->x_context(),
add_out_data,
residual_data,
out_data,
m,
n,
epsilon,
norm_weight_data,
nullptr,
nullptr,
residual_out_data,
nullptr,
use_sdnn);
PD_CHECK(ret == 0, "add_rms_layer_norm");
} else {
ret = api::rms_layer_norm<XPU_T, XPU_T>(xpu_ctx->x_context(),
add_out_data,
out_data,
m,
n,
epsilon,
norm_weight_data,
nullptr,
nullptr,
false);
PD_CHECK(ret == 0, "rms_layer_norm");
}
return {out, residual_out};
}
std::vector<paddle::Tensor> RmsNorm(
const paddle::Tensor& x,
const paddle::optional<paddle::Tensor>& bias,
const paddle::optional<paddle::Tensor>& residual,
const paddle::Tensor& norm_weight,
const paddle::optional<paddle::Tensor>& norm_bias,
const float epsilon,
const int begin_norm_axis,
const float quant_scale,
const int quant_round_type,
const float quant_max_bound,
const float quant_min_bound) {
const auto x_type = x.dtype();
#define APPLY_RMS_NORM_KERNEL(TX) \
return RmsNormKernel<TX>(x, \
bias, \
residual, \
norm_weight, \
norm_bias, \
epsilon, \
begin_norm_axis, \
quant_scale, \
quant_round_type, \
quant_max_bound, \
quant_min_bound);
if (x_type == paddle::DataType::BFLOAT16) {
APPLY_RMS_NORM_KERNEL(paddle::bfloat16);
} else if (x_type == paddle::DataType::FLOAT16) {
APPLY_RMS_NORM_KERNEL(paddle::float16);
} else if (x_type == paddle::DataType::FLOAT32) {
APPLY_RMS_NORM_KERNEL(float);
} else {
PD_THROW("RmsNorm not support x_type=", static_cast<int>(x_type));
return {};
}
#undef APPLY_RMS_NORM_KERNEL
}
std::vector<std::vector<int64_t>> RmsNormInferShape(
const std::vector<int64_t>& x_shape,
const paddle::optional<std::vector<int64_t>>& bias_shape,
const paddle::optional<std::vector<int64_t>>& residual_shape,
const std::vector<int64_t>& norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& norm_bias_shape,
const float epsilon,
const int begin_norm_axis,
const float quant_scale,
const int quant_round_type,
const float quant_max_bound,
const float quant_min_bound) {
PD_CHECK(begin_norm_axis > 0 && begin_norm_axis <= x_shape.size(),
"begin_norm_axis check fail");
int64_t m = std::accumulate(x_shape.begin(),
x_shape.begin() + begin_norm_axis,
static_cast<int64_t>(1),
std::multiplies<int64_t>());
return {x_shape, x_shape, {m}};
}
std::vector<paddle::DataType> RmsNormInferDtype(
const paddle::DataType& x_dtype,
const paddle::optional<paddle::DataType>& bias_dtype,
const paddle::optional<paddle::DataType>& residual_dtype,
const paddle::DataType& norm_weight_dtype,
const paddle::optional<paddle::DataType>& norm_bias_dtype,
const float epsilon,
const int begin_norm_axis,
const float quant_scale,
const int quant_round_type,
const float quant_max_bound,
const float quant_min_bound) {
// out, residual_out
return {x_dtype, x_dtype};
}
PD_BUILD_STATIC_OP(fused_rms_norm_xpu)
.Inputs({"x",
paddle::Optional("bias"),
paddle::Optional("residual"),
"norm_weight",
paddle::Optional("norm_bias")})
.Outputs({"out", "residul_out"})
.Attrs({"epsilon:float",
"begin_norm_axis:int",
"quant_scale:float",
"quant_round_type:int",
"quant_max_bound:float",
"quant_min_bound:float"})
.SetKernelFn(PD_KERNEL(RmsNorm))
.SetInferShapeFn(PD_INFER_SHAPE(RmsNormInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(RmsNormInferDtype));

View File

@@ -18,13 +18,35 @@
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/types.h>
#include "msg_utils.h"
#define MAX_BSZ 256
// #define GET_OUTPUT_DEBUG
struct msgdata {
long mtype;
int mtext[MAX_BSZ + 2]; // stop_flag, bsz, tokens
};
void GetOutputKVSignal(const paddle::Tensor& x,
int64_t rank_id,
bool wait_flag) {
int msg_queue_id = 1024 + rank_id;
static struct msgdatakv msg_rcv;
static key_t key = ftok("/opt/", msg_queue_id);
static int msgid = msgget(key, IPC_CREAT | 0666);
int* out_data = const_cast<int*>(x.data<int>());
int ret = -1;
if (!wait_flag) {
ret = msgrcv(msgid, &msg_rcv, (MAX_BSZ * 3 + 2) * 4, 0, IPC_NOWAIT);
} else {
ret = msgrcv(msgid, &msg_rcv, (MAX_BSZ * 3 + 2) * 4, 0, 0);
}
if (ret == -1) {
out_data[0] = -1;
out_data[1] = -1;
return;
}
int encoder_count = msg_rcv.mtext[0];
for (int i = 0; i < encoder_count * 3 + 2; i++) {
out_data[i] = msg_rcv.mtext[i];
}
return;
}
void GetOutput(const paddle::Tensor &x, int64_t rank_id, bool wait_flag,
int msg_queue_id) {

View File

@@ -0,0 +1,119 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <infer_ops.h>
#include <xft_api.h>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
template <typename T>
std::vector<paddle::Tensor> MoeEPCombineKernel(
const paddle::Tensor&
ffn_out, // expand_token_num * hidden_dim dtype is fp16/bf16
const paddle::Tensor& moe_index, // token_num * topk dtype is int
const paddle::Tensor&
weights, // token_num * topk dtype is same as ffn_out
int64_t recv_token_num,
int64_t expand_token_num,
int64_t hidden_dim,
int64_t topk) {
using XPU_T = typename XPUTypeTrait<T>::Type;
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
auto combined_out = paddle::empty(
{recv_token_num, hidden_dim}, ffn_out.dtype(), ffn_out.place());
const float* dequant_score = nullptr;
int ret = infer_ops::moe_ep_ffn_post_fusion(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_T*>(ffn_out.data<T>()),
moe_index.data<int32_t>(),
reinterpret_cast<const XPU_T*>(weights.data<T>()),
dequant_score,
reinterpret_cast<XPU_T*>(combined_out.mutable_data<T>()),
recv_token_num,
hidden_dim,
topk,
expand_token_num);
PD_CHECK(ret == 0);
return {combined_out};
}
std::vector<paddle::Tensor> MoeEPCombine(const paddle::Tensor& ffn_out,
const paddle::Tensor& moe_index,
const paddle::Tensor& weights,
const int recv_token_num,
const int expand_token_num,
const int hidden_dim,
const int topk) {
#define APPLY_KERNEL(TX) \
return MoeEPCombineKernel<TX>(ffn_out, \
moe_index, \
weights, \
recv_token_num, \
expand_token_num, \
hidden_dim, \
topk);
const auto ffn_out_dtype = ffn_out.dtype();
if (ffn_out_dtype == paddle::DataType::FLOAT16) {
APPLY_KERNEL(paddle::float16);
} else if (ffn_out_dtype == paddle::DataType::BFLOAT16) {
APPLY_KERNEL(paddle::bfloat16);
} else {
PD_THROW("MoeEPCombine not support ffn_out_type==%d",
static_cast<int>(ffn_out_dtype));
return {};
}
#undef APPLY_KERNEL
}
std::vector<std::vector<int64_t>> MoeEPCombineInferShape(
const std::vector<int64_t>& ffn_out_shape,
const std::vector<int64_t>& moe_index_shape,
const std::vector<int64_t>& weights_shape,
const int recv_token_num,
const int expand_token_num,
const int hidden_dim,
const int topk) {
std::vector<int64_t> combined_out_shape = {recv_token_num, hidden_dim};
return {combined_out_shape};
}
std::vector<paddle::DataType> MoeEPCombineInferDtype(
const paddle::DataType& ffn_out_dtype,
const paddle::DataType& moe_index_dtype,
const paddle::DataType& weights_dtype) {
return {ffn_out_dtype};
}
PD_BUILD_STATIC_OP(ep_moe_expert_combine)
.Inputs({"ffn_out", "moe_index", "weights"})
.Outputs({"combined_out"})
.Attrs({"recv_token_num: int",
"expand_token_num: int",
"hidden_dim: int",
"topk: int"})
.SetKernelFn(PD_KERNEL(MoeEPCombine))
.SetInferShapeFn(PD_INFER_SHAPE(MoeEPCombineInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoeEPCombineInferDtype));

View File

@@ -0,0 +1,201 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <infer_ops.h>
#include <infer_ops_eb.h>
#include <xft_api.h>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
template <typename TX, typename TY>
std::vector<paddle::Tensor> EPMoeExpertDispatchKernel(
const paddle::Tensor& input,
const paddle::Tensor& topk_ids,
const paddle::Tensor& topk_weights,
const paddle::optional<paddle::Tensor>& input_scales,
const std::vector<int>& token_nums_per_expert,
const int64_t token_nums_this_rank) {
using XPU_TX = typename XPUTypeTrait<TX>::Type;
using XPU_TY = typename XPUTypeTrait<TY>::Type;
phi::XPUPlace xpu_place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx =
paddle::experimental::DeviceContextPool::Instance().Get(xpu_place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
const auto input_type = input.dtype();
auto m = input.dims()[0];
auto n = input.dims()[1];
const int64_t expert_num = token_nums_per_expert.size();
const int topk = topk_ids.dims()[1];
auto place = input.place();
auto block_num = xpu_ctx->x_context()->ncluster();
paddle::Tensor permute_input;
auto permute_indices_per_token =
paddle::empty({m, topk}, paddle::DataType::INT32, place);
auto expert_m = paddle::empty({expert_num}, paddle::DataType::INT32, place);
auto recv_num_tokens_per_expert_list_cumsum =
paddle::empty({expert_num + 1}, paddle::DataType::INT32, place);
auto expand_input_scales =
paddle::empty({token_nums_this_rank}, paddle::DataType::FLOAT32, place);
const int64_t ep_size = 1;
const int64_t ep_rank = 0;
if (std::is_same<TY, int8_t>::value) {
permute_input =
paddle::empty({token_nums_this_rank, n}, paddle::DataType::INT8, place);
auto ret = infer_ops::moe_ffn_pre_sorted_quant_pe<XPU_TX, int>(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_TX*>(input.data<TX>()),
topk_ids.data<int>(),
input_scales.get_ptr()->data<float>(),
nullptr,
reinterpret_cast<int8_t*>(permute_input.data<int8_t>()),
const_cast<int*>(permute_indices_per_token.data<int>()),
const_cast<int*>(expert_m.data<int>()),
const_cast<int*>(recv_num_tokens_per_expert_list_cumsum.data<int>()),
expand_input_scales.data<float>(),
m,
n,
expert_num,
topk,
block_num,
token_nums_this_rank);
PD_CHECK(ret == 0, "moe_ep_ffn_pre_sorted failed");
} else {
permute_input = paddle::empty({token_nums_this_rank, n}, input_type, place);
auto ret = infer_ops::moe_ep_ffn_pre_sorted<XPU_TX, int>(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_TX*>(input.data<TX>()),
topk_ids.data<int>(),
nullptr,
reinterpret_cast<XPU_TX*>(permute_input.data<TX>()),
const_cast<int*>(permute_indices_per_token.data<int>()),
const_cast<int*>(expert_m.data<int>()),
const_cast<int*>(recv_num_tokens_per_expert_list_cumsum.data<int>()),
m,
n,
expert_num,
topk,
block_num,
ep_size,
ep_rank,
token_nums_this_rank);
PD_CHECK(ret == 0, "moe_ep_ffn_pre_sorted failed");
}
return {permute_input,
permute_indices_per_token,
recv_num_tokens_per_expert_list_cumsum,
topk_weights,
expand_input_scales};
}
std::vector<paddle::Tensor> EPMoeExpertDispatch(
const paddle::Tensor& input,
const paddle::Tensor& topk_ids,
const paddle::Tensor& topk_weights,
const paddle::optional<paddle::Tensor>& input_scales,
const std::vector<int>& token_nums_per_expert,
const int token_nums_this_rank,
const std::string quant_method) {
#define APPLY_KERNEL(TX, TY) \
return EPMoeExpertDispatchKernel<TX, TY>(input, \
topk_ids, \
topk_weights, \
input_scales, \
token_nums_per_expert, \
token_nums_this_rank);
const auto input_dtype = input.dtype();
if (input_dtype == paddle::DataType::FLOAT16 && quant_method == "w4a8") {
APPLY_KERNEL(paddle::float16, int8_t);
} else if (input_dtype == paddle::DataType::FLOAT16 &&
quant_method != "w4a8") {
APPLY_KERNEL(paddle::float16, paddle::float16);
} else if (input_dtype == paddle::DataType::BFLOAT16 &&
quant_method == "w4a8") {
APPLY_KERNEL(paddle::bfloat16, int8_t);
} else if (input_dtype == paddle::DataType::BFLOAT16 &&
quant_method != "w4a8") {
APPLY_KERNEL(paddle::bfloat16, paddle::bfloat16);
} else {
PD_THROW("EPMoeExpertDispatch not support input_dtype=",
static_cast<int>(input_dtype),
"quant_method=",
quant_method);
return {};
}
#undef APPLY_KERNEL
}
std::vector<std::vector<int64_t>> EPMoeExpertDispatchInferShape(
const std::vector<int64_t>& input_shape,
const std::vector<int64_t>& topk_ids_shape,
const std::vector<int64_t>& topk_weights_shape,
const paddle::optional<std::vector<int64_t>>& input_scales_shape,
const std::vector<int>& token_nums_per_expert,
const int token_nums_this_rank,
const std::string quant_method) {
const int m = input_shape[0];
const int hidden_size = input_shape[input_shape.size() - 1];
const int topk = topk_ids_shape[topk_ids_shape.size() - 1];
const int expert_num = token_nums_per_expert.size();
return {{token_nums_this_rank, hidden_size},
{expert_num, m},
{expert_num},
{token_nums_this_rank},
{token_nums_this_rank}};
}
std::vector<paddle::DataType> EPMoeExpertDispatchInferDtype(
const paddle::DataType& input_dtype,
const paddle::DataType& topk_ids_dtype,
const paddle::DataType& topk_weights_dtype,
const paddle::optional<paddle::DataType>& input_scales_dtype,
const std::vector<int>& token_nums_per_expert,
const int token_nums_this_rank,
const std::string quant_method) {
auto output_dtype = input_dtype;
if (quant_method == "w4a8") {
output_dtype = paddle::DataType::INT8;
}
return {
output_dtype,
paddle::DataType::INT32,
paddle::DataType::INT32,
topk_weights_dtype,
paddle::DataType::FLOAT32,
};
}
PD_BUILD_STATIC_OP(ep_moe_expert_dispatch)
.Inputs(
{"input", "topk_ids", "topk_weights", paddle::Optional("input_scales")})
.Outputs({"permute_input",
"permute_indices_per_token",
"token_nums_per_expert_cumsum",
"dst_weights",
"expand_input_scales"})
.Attrs({"token_nums_per_expert: std::vector<int>",
"token_nums_this_rank: int",
"quant_method: std::string"})
.SetKernelFn(PD_KERNEL(EPMoeExpertDispatch))
.SetInferShapeFn(PD_INFER_SHAPE(EPMoeExpertDispatchInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(EPMoeExpertDispatchInferDtype));

View File

@@ -0,0 +1,535 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <blocks/moe_fc_block_eb.h>
#include <core/check.h>
#include <core/context.h>
#include <core/param.h>
#include <infer_ops.h>
#include <xft_api.h>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
#include "utility/env.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
XPU_DECLARE_BOOL(MOE_FFN_USE_DENSE_INPUT, false);
XPU_DECLARE_BOOL(BKCL_DISPATCH_ALL_GATHER, false);
namespace xftblock = baidu::xpu::xftblock;
namespace api = baidu::xpu::api;
template <typename TX1, typename TX2, typename TW, typename TGEMM>
void MoeExpertFFNImpl(xftblock::Tensor* ffn_in,
xftblock::Tensor* token_num_info,
xftblock::Tensor* ffn1_weight,
xftblock::Tensor* ffn2_weight,
xftblock::Tensor* ffn1_bias,
xftblock::Tensor* ffn2_bias,
xftblock::Tensor* ffn2_out,
float* ffn2_act_scale,
TX2* ffn2_shift,
TX2* ffn2_smooth,
const int hadamard_blocksize) {
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
xftblock::XFTContext xctx(xpu_ctx->x_context(), nullptr);
auto rt_guard = xctx.get_rt_guard();
auto xftblock_tx2 = xftblock::DataTypeToEnum<TX2>::value;
int ret = -1;
int expert_num = ffn1_weight->get_dim(0);
int inter_dim = ffn1_weight->get_dim(1);
int outer_dim = inter_dim / 2;
bool is_padding_input = ffn_in->get_dims().size() == 3;
auto ffn1_out_shape = ffn_in->get_dims();
int hidden_dim = ffn1_out_shape[ffn1_out_shape.size() - 1];
ffn1_out_shape[ffn1_out_shape.size() - 1] = inter_dim;
xftblock::Tensor ffn1_out(rt_guard, xftblock_tx2, ffn1_out_shape);
ret = xftblock::xft_moe_fc_block_eb<TX1, TW, TX2, float, int, TGEMM>(
&xctx,
ffn_in,
ffn1_weight,
&ffn1_out,
ffn1_bias,
is_padding_input ? nullptr : token_num_info,
is_padding_input ? token_num_info : nullptr,
expert_num,
1, // moe_topk
ffn1_out_shape.size() == 2 ? xftblock::MoeFCInputMode::DENSE
: xftblock::MoeFCInputMode::SPARSE);
PD_CHECK(ret == 0);
int token_num = ffn_in->numel() / hidden_dim;
auto swiglu_out_shape = ffn1_out_shape;
swiglu_out_shape[swiglu_out_shape.size() - 1] /= 2;
xftblock::Tensor swiglu_out(rt_guard, xftblock_tx2, swiglu_out_shape);
ret = api::fast_swiglu<TX2>(xpu_ctx->x_context(),
ffn1_out.data<TX2>(),
swiglu_out.mutable_data<TX2>(),
{token_num, inter_dim},
1,
true);
PD_CHECK(ret == 0);
// TODO(mayang02): use fusion_smooth_transform
if (ffn2_shift != nullptr) {
ret = api::broadcast_add<TX2>(xpu_ctx->x_context(),
ffn2_shift,
swiglu_out.data<TX2>(),
swiglu_out.mutable_data<TX2>(),
{1, outer_dim},
{token_num, outer_dim});
PD_CHECK(ret == 0);
}
if (ffn2_smooth != nullptr) {
ret = api::broadcast_mul<TX2>(xpu_ctx->x_context(),
ffn2_smooth,
swiglu_out.data<TX2>(),
swiglu_out.mutable_data<TX2>(),
{1, outer_dim},
{token_num, outer_dim});
PD_CHECK(ret == 0);
}
if (hadamard_blocksize > 0) {
ret = infer_ops::fast_walsh_transform<TX2>(xpu_ctx->x_context(),
swiglu_out.data<TX2>(),
nullptr,
nullptr,
swiglu_out.mutable_data<TX2>(),
hadamard_blocksize,
token_num,
outer_dim);
PD_CHECK(ret == 0);
}
xftblock::Tensor ffn2_in(swiglu_out.mutable_data<TX2>(),
nullptr,
ffn2_act_scale,
xftblock_tx2,
swiglu_out_shape);
ret = xftblock::xft_moe_fc_block_eb<TX2, TW, TX2, float, int, TGEMM>(
&xctx,
&ffn2_in,
ffn2_weight,
ffn2_out,
nullptr,
is_padding_input ? nullptr : token_num_info,
is_padding_input ? token_num_info : nullptr,
expert_num,
1, // moe_topk
ffn1_out_shape.size() == 2
? xftblock::MoeFCInputMode::DENSE
: xftblock::MoeFCInputMode::SPARSE); // bias_mode
PD_CHECK(ret == 0);
}
static void convert_to_lod(xftblock::XFTContext* xctx,
xftblock::Tensor* token_num_info) {
auto rt_guard = xctx->get_rt_guard();
auto ctx = xctx->get_context();
const int expert_num = token_num_info->numel();
xftblock::Tensor tokens_num_lod(
rt_guard, xftblock::DataType::DT_INT32, {expert_num + 1});
int ret = api::constant(ctx, tokens_num_lod.data<int>(), expert_num + 1, 0);
PD_CHECK(ret == 0);
ret = api::cumsum<int>(ctx,
token_num_info->data<int>(),
tokens_num_lod.data<int>() + 1,
{expert_num},
false,
false,
0);
PD_CHECK(ret == 0);
*token_num_info = std::move(tokens_num_lod);
}
template <typename TX1, typename TX2, typename TW>
std::vector<paddle::Tensor> MoeExpertFFNKernel(
const paddle::Tensor& ffn_in,
const paddle::Tensor& token_num_info,
const paddle::Tensor& ffn1_weight,
const paddle::Tensor& ffn2_weight,
const paddle::optional<paddle::Tensor>& ffn1_bias,
const paddle::optional<paddle::Tensor>& ffn2_bias,
const paddle::optional<paddle::Tensor>& ffn1_act_scale,
const paddle::optional<paddle::Tensor>& ffn2_act_scale,
const paddle::optional<paddle::Tensor>& ffn1_weight_scale,
const paddle::optional<paddle::Tensor>& ffn2_weight_scale,
const paddle::optional<paddle::Tensor>& ffn2_shift,
const paddle::optional<paddle::Tensor>& ffn2_smooth,
const std::string& quant_method,
const int hadamard_blocksize,
const int valid_token_num) {
using XPU_TX1 = typename XPUTypeTrait<TX1>::Type;
using XPU_TX2 = typename XPUTypeTrait<TX2>::Type;
using XPU_TW = typename XPUTypeTrait<TW>::Type;
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
xftblock::XFTContext xctx(xpu_ctx->x_context(), nullptr);
auto rt_guard = xctx.get_rt_guard();
int ret = -1;
auto input_shape = ffn_in.shape();
auto ffn1_w_shape = ffn1_weight.shape();
int expert_num = ffn1_w_shape[0];
int hidden_dim = input_shape[input_shape.size() - 1];
int inter_dim = ffn1_w_shape[1];
int outer_dim = inter_dim / 2;
bool is_padding_input = input_shape.size() == 3;
if (is_padding_input) {
PD_CHECK(input_shape[0] == expert_num);
PD_CHECK(token_num_info.numel() == expert_num,
"token_num_info.numel() != expert_num, "
"token_num_info.numel(): ",
token_num_info.numel(),
", expert_num: ",
expert_num);
}
bool is_w4 = quant_method == "w4a8" || quant_method == "weight_only_int4";
auto xftblock_tx1 = xftblock::DataTypeToEnum<XPU_TX1>::value;
auto xftblock_tx2 = xftblock::DataTypeToEnum<XPU_TX2>::value;
auto xftblock_tw = xftblock::DataTypeToEnum<XPU_TW>::value;
if (is_w4) {
xftblock_tw = xftblock::DataTypeToEnum<int4_t>::value;
}
float* ffn1_act_scale_data =
ffn1_act_scale.get_ptr() == nullptr
? nullptr
: const_cast<float*>(ffn1_act_scale.get_ptr()->data<float>());
float* ffn2_act_scale_data =
ffn2_act_scale.get_ptr() == nullptr
? nullptr
: const_cast<float*>(ffn2_act_scale.get_ptr()->data<float>());
float* ffn1_w_scale_data =
ffn1_weight_scale.get_ptr() == nullptr
? nullptr
: const_cast<float*>(ffn1_weight_scale.get_ptr()->data<float>());
xftblock::Tensor xffn1_w(const_cast<TW*>(ffn1_weight.data<TW>()),
nullptr,
ffn1_w_scale_data,
xftblock_tw,
{expert_num, inter_dim, hidden_dim});
float* ffn2_w_scale_data =
ffn2_weight_scale.get_ptr() == nullptr
? nullptr
: const_cast<float*>(ffn2_weight_scale.get_ptr()->data<float>());
xftblock::Tensor xffn2_w(const_cast<TW*>(ffn2_weight.data<TW>()),
nullptr,
ffn2_w_scale_data,
xftblock_tw,
{expert_num, hidden_dim, outer_dim});
std::shared_ptr<xftblock::Tensor> xffn1_bias;
if (ffn1_bias.get_ptr()) {
xffn1_bias = std::make_shared<xftblock::Tensor>(
const_cast<float*>(ffn1_bias.get_ptr()->data<float>()),
xftblock::DataType::DT_FLOAT,
ffn1_bias.get_ptr()->shape());
}
std::shared_ptr<xftblock::Tensor> xffn2_bias;
if (ffn2_bias.get_ptr()) {
xffn2_bias = std::make_shared<xftblock::Tensor>(
const_cast<float*>(ffn2_bias.get_ptr()->data<float>()),
xftblock::DataType::DT_FLOAT,
ffn2_bias.get_ptr()->shape());
}
xftblock::Tensor xtoken_num_info(const_cast<int*>(token_num_info.data<int>()),
xftblock::DataType::DT_INT32,
token_num_info.shape());
XPU_TX2* shift_data = nullptr;
XPU_TX2* smooth_data = nullptr;
if (ffn2_shift.get_ptr()) {
shift_data = reinterpret_cast<XPU_TX2*>(
const_cast<TX2*>(ffn2_shift.get_ptr()->data<TX2>()));
}
if (ffn2_smooth.get_ptr()) {
smooth_data = reinterpret_cast<XPU_TX2*>(
const_cast<TX2*>(ffn2_smooth.get_ptr()->data<TX2>()));
}
paddle::Tensor ffn2_out =
paddle::empty_like(ffn_in, paddle::DataType::BFLOAT16);
xftblock::Tensor xffn1_in;
xftblock::Tensor xffn2_out;
paddle::Tensor ffn1_in_dense;
paddle::Tensor ffn1_in_scale_per_token;
if (FLAGS_MOE_FFN_USE_DENSE_INPUT && is_padding_input) {
convert_to_lod(&xctx, &xtoken_num_info);
if (quant_method == "w4a8") {
ffn1_in_scale_per_token = paddle::empty(
{valid_token_num}, paddle::DataType::FLOAT32, ffn_in.place());
ffn1_in_dense = paddle::empty({valid_token_num, hidden_dim},
paddle::DataType::INT8,
ffn_in.place());
xffn1_in = xftblock::Tensor(ffn1_in_dense.data<int8_t>(),
nullptr,
ffn1_in_scale_per_token.data<float>(),
xftblock::DataType::DT_INT8,
{valid_token_num, hidden_dim});
if (std::is_same<XPU_TX1, int8_t>::value) {
PD_CHECK(ffn1_act_scale_data != nullptr,
"need ffn1_act_scale for x int8 per expert input");
ret = infer_ops::sequence_unpad<float, int>(
xpu_ctx->x_context(),
ffn1_act_scale_data,
ffn1_in_scale_per_token.data<float>(),
xtoken_num_info.data<int>(),
expert_num,
input_shape[1],
1,
true);
PD_CHECK(ret == 0);
ret = infer_ops::sequence_unpad<int8_t, int>(
xpu_ctx->x_context(),
reinterpret_cast<const int8_t*>(ffn_in.data<int8_t>()),
reinterpret_cast<int8_t*>(xffn1_in.data<int8_t>()),
xtoken_num_info.data<int>(),
expert_num,
input_shape[1],
input_shape[2],
true);
PD_CHECK(ret == 0);
} else {
ret = infer_ops::quant2d_per_expert<XPU_TX1>(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_TX1*>(ffn_in.data<TX1>()),
ffn1_act_scale_data,
xtoken_num_info.data<int>(),
reinterpret_cast<int8_t*>(xffn1_in.data<int8_t>()),
ffn1_in_scale_per_token.data<float>(),
expert_num,
valid_token_num,
hidden_dim,
true,
false,
input_shape[1]);
PD_CHECK(ret == 0);
}
} else {
ffn1_in_dense = paddle::empty(
{valid_token_num, hidden_dim}, ffn_in.dtype(), ffn_in.place());
xffn1_in = xftblock::Tensor(ffn1_in_dense.data<TX1>(),
nullptr,
ffn1_act_scale_data,
xftblock_tx1,
{valid_token_num, hidden_dim});
ret = infer_ops::sequence_unpad<XPU_TX1, int>(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_TX1*>(ffn_in.data<TX1>()),
reinterpret_cast<XPU_TX1*>(xffn1_in.data<XPU_TX1>()),
xtoken_num_info.data<int>(),
expert_num,
input_shape[1],
input_shape[2],
true);
PD_CHECK(ret == 0);
}
xffn2_out =
xftblock::Tensor(rt_guard, xftblock_tx2, {valid_token_num, hidden_dim});
} else if (FLAGS_BKCL_DISPATCH_ALL_GATHER && !is_padding_input &&
quant_method == "w4a8") {
convert_to_lod(&xctx, &xtoken_num_info);
ffn1_in_scale_per_token = paddle::empty(
{valid_token_num}, paddle::DataType::FLOAT32, ffn_in.place());
ffn1_in_dense = paddle::empty(
{valid_token_num, hidden_dim}, paddle::DataType::INT8, ffn_in.place());
xffn1_in = xftblock::Tensor(ffn1_in_dense.data<int8_t>(),
nullptr,
ffn1_in_scale_per_token.data<float>(),
xftblock::DataType::DT_INT8,
{valid_token_num, hidden_dim});
ret = infer_ops::quant2d_per_expert<XPU_TX1>(
xpu_ctx->x_context(),
reinterpret_cast<const XPU_TX1*>(ffn_in.data<TX1>()),
ffn1_act_scale_data,
xtoken_num_info.data<int>(),
reinterpret_cast<int8_t*>(xffn1_in.data<int8_t>()),
ffn1_in_scale_per_token.data<float>(),
expert_num,
valid_token_num,
hidden_dim);
PD_CHECK(ret == 0);
xffn2_out =
xftblock::Tensor(ffn2_out.data<TX2>(), xftblock_tx2, input_shape);
} else {
xffn1_in = xftblock::Tensor(const_cast<TX1*>(ffn_in.data<TX1>()),
nullptr,
ffn1_act_scale_data,
xftblock_tx1,
input_shape);
xffn2_out = xftblock::Tensor(
ffn2_out.mutable_data<TX2>(), xftblock_tx2, input_shape);
}
#define FFN_IMPL(TX1, TX2, TW, TGEMM) \
MoeExpertFFNImpl<TX1, TX2, TW, TGEMM>(&xffn1_in, \
&xtoken_num_info, \
&xffn1_w, \
&xffn2_w, \
xffn1_bias.get(), \
xffn2_bias.get(), \
&xffn2_out, \
ffn2_act_scale_data, \
shift_data, \
smooth_data, \
hadamard_blocksize)
if (quant_method == "weight_only_int8") {
FFN_IMPL(XPU_TX1, XPU_TX2, int8_t, float);
} else if (quant_method == "weight_only_int4") {
FFN_IMPL(XPU_TX1, XPU_TX2, int4_t, int4_wo_int15);
} else if (quant_method == "w4a8") {
if (FLAGS_MOE_FFN_USE_DENSE_INPUT && is_padding_input) {
FFN_IMPL(int8_t, XPU_TX2, int4_t, int4_wo_int8);
} else if (FLAGS_BKCL_DISPATCH_ALL_GATHER && !is_padding_input) {
FFN_IMPL(int8_t, XPU_TX2, int4_t, int4_wo_int8);
} else {
FFN_IMPL(XPU_TX1, XPU_TX2, int4_t, int4_wo_int8);
}
} else {
FFN_IMPL(XPU_TX1, XPU_TX2, XPU_TW, float);
}
#undef FFN_IMPL
if (FLAGS_MOE_FFN_USE_DENSE_INPUT && is_padding_input) {
ret = infer_ops::sequence_pad<XPU_TX2, int>(
xpu_ctx->x_context(),
const_cast<XPU_TX2*>(xffn2_out.data<XPU_TX2>()),
reinterpret_cast<XPU_TX2*>(ffn2_out.data<TX2>()),
xtoken_num_info.data<int>(),
input_shape[0],
input_shape[1],
input_shape[2],
false,
0);
PD_CHECK(ret == 0);
}
return {ffn2_out};
}
std::vector<paddle::Tensor> MoeExpertFFN(
const paddle::Tensor& ffn_in,
const paddle::Tensor& token_num_info,
const paddle::Tensor& ffn1_weight,
const paddle::Tensor& ffn2_weight,
const paddle::optional<paddle::Tensor>& ffn1_bias,
const paddle::optional<paddle::Tensor>& ffn2_bias,
const paddle::optional<paddle::Tensor>& ffn1_act_scale,
const paddle::optional<paddle::Tensor>& ffn2_act_scale,
const paddle::optional<paddle::Tensor>& ffn1_weight_scale,
const paddle::optional<paddle::Tensor>& ffn2_weight_scale,
const paddle::optional<paddle::Tensor>& ffn2_shift,
const paddle::optional<paddle::Tensor>& ffn2_smooth,
const std::string& quant_method,
const int hadamard_blocksize,
const int valid_token_num) {
const auto x_type = ffn_in.dtype();
const auto w_type = ffn1_weight.dtype();
#define APPLY_FFN_KERNEL(TX1, TX2, TW) \
return MoeExpertFFNKernel<TX1, TX2, TW>(ffn_in, \
token_num_info, \
ffn1_weight, \
ffn2_weight, \
ffn1_bias, \
ffn2_bias, \
ffn1_act_scale, \
ffn2_act_scale, \
ffn1_weight_scale, \
ffn2_weight_scale, \
ffn2_shift, \
ffn2_smooth, \
quant_method, \
hadamard_blocksize, \
valid_token_num);
if (x_type == paddle::DataType::BFLOAT16 &&
w_type == paddle::DataType::BFLOAT16) {
APPLY_FFN_KERNEL(paddle::bfloat16, paddle::bfloat16, paddle::bfloat16);
} else if (x_type == paddle::DataType::BFLOAT16 &&
w_type == paddle::DataType::INT8) {
APPLY_FFN_KERNEL(paddle::bfloat16, paddle::bfloat16, int8_t);
} else if (x_type == paddle::DataType::INT8 &&
w_type == paddle::DataType::INT8) {
APPLY_FFN_KERNEL(int8_t, paddle::bfloat16, int8_t);
} else {
PD_THROW("MoeExpertFFN not support x_type=",
static_cast<int>(x_type),
", w_type=",
static_cast<int>(w_type));
return {};
}
#undef APPLY_FFN_KERNEL
}
std::vector<std::vector<int64_t>> MoeExpertFFNInferShape(
const std::vector<int64_t>& permute_input_shape,
const std::vector<int64_t>& token_num_info_shape,
const std::vector<int64_t>& ffn1_weight_shape,
const std::vector<int64_t>& ffn2_weight_shape,
const paddle::optional<std::vector<int64_t>>& ffn1_bias_shape,
const paddle::optional<std::vector<int64_t>>& ffn2_bias_shape,
const paddle::optional<std::vector<int64_t>>& ffn1_act_scale_shape,
const paddle::optional<std::vector<int64_t>>& ffn2_act_scale_shape,
const paddle::optional<std::vector<int64_t>>& ffn1_weight_scale_shape,
const paddle::optional<std::vector<int64_t>>& ffn2_weight_scale_shape,
const paddle::optional<std::vector<int64_t>>& ffn2_shift_shape,
const paddle::optional<std::vector<int64_t>>& ffn2_smooth_shape) {
return {permute_input_shape};
}
std::vector<paddle::DataType> MoeExpertFFNInferDtype(
const paddle::DataType& permute_input_dtype,
const paddle::DataType& token_num_info_dtype,
const paddle::DataType& ffn1_weight_dtype,
const paddle::DataType& ffn2_weight_dtype,
const paddle::optional<paddle::DataType>& ffn1_bias_dtype,
const paddle::optional<paddle::DataType>& ffn2_bias_dtype,
const paddle::optional<paddle::DataType>& ffn1_act_scale_dtype,
const paddle::optional<paddle::DataType>& ffn2_act_scale_dtype,
const paddle::optional<paddle::DataType>& ffn1_weight_scale_dtype,
const paddle::optional<paddle::DataType>& ffn2_weight_scale_dtype,
const paddle::optional<paddle::DataType>& ffn2_shift_dtype,
const paddle::optional<paddle::DataType>& ffn2_smooth_dtype) {
if (permute_input_dtype == paddle::DataType::INT8) {
return {paddle::DataType::BFLOAT16};
} else {
return {permute_input_dtype};
}
}
PD_BUILD_STATIC_OP(moe_expert_ffn)
.Inputs({"ffn_in",
"token_num_info",
"ffn1_weight",
"ffn2_weight",
paddle::Optional("ffn1_bias"),
paddle::Optional("ffn2_bias"),
paddle::Optional("ffn1_act_scale"),
paddle::Optional("ffn2_act_scale"),
paddle::Optional("ffn1_weight_scale"),
paddle::Optional("ffn2_weight_scale"),
paddle::Optional("ffn2_shift"),
paddle::Optional("ffn2_smooth")})
.Outputs({"ffn_out"})
.Attrs({"quant_method:std::string",
"hadamard_blocksize:int",
"valid_token_num:int"})
.SetKernelFn(PD_KERNEL(MoeExpertFFN))
.SetInferShapeFn(PD_INFER_SHAPE(MoeExpertFFNInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoeExpertFFNInferDtype));

View File

@@ -0,0 +1,134 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <infer_ops.h>
#include <xft_api.h>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
std::vector<paddle::Tensor> MoERedundantTopKSelect(
const paddle::Tensor& gating_logits,
const paddle::Tensor& expert_id_to_ep_rank_array,
const paddle::Tensor& expert_in_rank_num_list,
paddle::Tensor& tokens_per_expert_stats_list, // NOLINT
const paddle::optional<paddle::Tensor>& bias,
const int moe_topk,
const bool apply_norm_weight,
const bool enable_softmax_top_k_fused,
const int redundant_ep_rank_num_plus_one) {
namespace api = baidu::xpu::api;
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
api::Context* ctx = xpu_ctx->x_context();
if (gating_logits.is_cpu()) {
ctx = new api::Context(api::kCPU);
}
PD_CHECK(apply_norm_weight, "only support apply_norm_weight==true");
PD_CHECK(enable_softmax_top_k_fused,
"only support enable_softmax_top_k_fused==true");
PD_CHECK(bias.get_ptr() != nullptr, "only support bias != nullptr");
auto gating_logits_dims = gating_logits.shape();
int expert_num = gating_logits_dims[gating_logits_dims.size() - 1];
int64_t token_num = 0;
if (gating_logits_dims.size() == 3) {
token_num = gating_logits_dims[0] * gating_logits_dims[1];
} else {
token_num = gating_logits_dims[0];
}
auto topk_ids = paddle::empty(
{token_num, moe_topk}, paddle::DataType::INT32, gating_logits.place());
auto topk_ids_tmp = paddle::empty(
{token_num, moe_topk}, paddle::DataType::INT32, gating_logits.place());
auto source_rows_tmp = paddle::empty(
{token_num, moe_topk}, paddle::DataType::INT32, gating_logits.place());
auto topk_weights = paddle::empty(
{token_num, moe_topk}, paddle::DataType::FLOAT32, gating_logits.place());
const float* bias_data =
bias.get_ptr() != nullptr ? bias.get_ptr()->data<float>() : nullptr;
int ret = infer_ops::moe_redundant_softmax_topk_normed<float, float, int>(
ctx,
gating_logits.data<float>(),
bias_data,
expert_id_to_ep_rank_array.data<int>(),
expert_in_rank_num_list.data<int>(),
tokens_per_expert_stats_list.data<int>(),
topk_weights.data<float>(),
topk_ids.data<int>(),
topk_ids_tmp.data<int>(),
source_rows_tmp.data<int>(),
expert_num,
moe_topk,
token_num,
redundant_ep_rank_num_plus_one);
PD_CHECK(ret == 0);
return {topk_ids, topk_weights};
}
std::vector<std::vector<int64_t>> MoERedundantTopKSelectInferShape(
const std::vector<int64_t>& gating_logits_shape,
const std::vector<int64_t>& expert_id_to_ep_rank_array_shape,
const std::vector<int64_t>& expert_in_rank_num_list_shape,
const std::vector<int64_t>& tokens_per_expert_stats_list_shape,
const paddle::optional<std::vector<int64_t>>& bias_shape,
const int moe_topk,
const bool apply_norm_weight,
const bool enable_softmax_top_k_fused,
const int redundant_ep_rank_num_plus_one) {
int64_t token_rows = -1;
if (gating_logits_shape.size() == 3) {
token_rows = gating_logits_shape[0] * gating_logits_shape[1];
} else {
token_rows = gating_logits_shape[0];
}
std::vector<int64_t> topk_ids_shape = {token_rows, moe_topk};
std::vector<int64_t> topk_weights_shape = {token_rows, moe_topk};
return {topk_ids_shape, topk_weights_shape};
}
std::vector<paddle::DataType> MoERedundantTopKSelectInferDtype(
const paddle::DataType& gating_logits_dtype,
const paddle::DataType& expert_id_to_ep_rank_array_dtype,
const paddle::DataType& expert_in_rank_num_list_dtype,
const paddle::DataType& tokens_per_expert_stats_list_dtype,
const paddle::optional<paddle::DataType>& bias_type,
const int moe_topk,
const bool apply_norm_weight,
const bool enable_softmax_top_k_fused,
const int redundant_ep_rank_num_plus_one) {
return {paddle::DataType::INT32, paddle::DataType::FLOAT32};
}
PD_BUILD_OP(moe_redundant_topk_select)
.Inputs({"gating_logits",
"expert_id_to_ep_rank_array",
"expert_in_rank_num_list",
"tokens_per_expert_stats_list",
paddle::Optional("bias")})
.Outputs({"topk_ids", "topk_weights", "tokens_per_expert_stats_list_out"})
.Attrs({"moe_topk: int",
"apply_norm_weight: bool",
"enable_softmax_top_k_fused:bool",
"redundant_ep_rank_num_plus_one:int"})
.SetInplaceMap({{"tokens_per_expert_stats_list",
"tokens_per_expert_stats_list_out"}})
.SetKernelFn(PD_KERNEL(MoERedundantTopKSelect))
.SetInferShapeFn(PD_INFER_SHAPE(MoERedundantTopKSelectInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoERedundantTopKSelectInferDtype));

View File

@@ -0,0 +1,86 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <infer_ops.h>
#include <xft_api.h>
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "utility/debug.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
std::vector<paddle::Tensor> MoeTopkSelect(
const paddle::Tensor& gating_logits,
const paddle::optional<paddle::Tensor>& bias,
const int moe_topk,
const bool apply_norm_weight) {
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx);
PD_CHECK(apply_norm_weight, "only support apply_norm_weight==true");
auto gating_logits_dims = gating_logits.shape();
int token_num = gating_logits_dims[0];
int expert_num = gating_logits_dims[1];
auto topk_ids = paddle::empty(
{token_num, moe_topk}, paddle::DataType::INT32, gating_logits.place());
auto topk_weights = paddle::empty(
{token_num, moe_topk}, paddle::DataType::FLOAT32, gating_logits.place());
int32_t* block_statistic = nullptr;
const float* bias_data =
bias.get_ptr() != nullptr ? bias.get_ptr()->data<float>() : nullptr;
if (token_num > 0) {
int ret = infer_ops::moe_softmax_topk_norm_fusion(
xpu_ctx->x_context(),
gating_logits.data<float>(),
topk_weights.mutable_data<float>(),
topk_ids.mutable_data<int>(),
block_statistic,
token_num,
expert_num,
moe_topk,
0,
bias_data);
PD_CHECK(ret == 0);
}
return {topk_ids, topk_weights};
}
std::vector<std::vector<int64_t>> MoeTopkSelectInferShape(
const std::vector<int64_t>& gating_logits_shape,
const std::vector<int64_t>& bias_shape,
const int moe_topk,
const bool apply_norm_weight) {
std::vector<int64_t> topk_ids_shape = {gating_logits_shape[0], moe_topk};
std::vector<int64_t> topk_weights_shape = {gating_logits_shape[0], moe_topk};
return {topk_ids_shape, topk_weights_shape};
}
std::vector<paddle::DataType> MoeTopkSelectInferDtype(
const paddle::DataType& gating_logits_dtype,
const paddle::DataType& bias_dtype) {
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
}
PD_BUILD_STATIC_OP(moe_topk_select)
.Inputs({"gating_logits", paddle::Optional("bias")})
.Outputs({"topk_ids", "topk_weights"})
.Attrs({"moe_topk: int", "apply_norm_weight: bool"})
.SetKernelFn(PD_KERNEL(MoeTopkSelect))
.SetInferShapeFn(PD_INFER_SHAPE(MoeTopkSelectInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoeTopkSelectInferDtype));

View File

@@ -0,0 +1,39 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/mman.h>
#include <sys/msg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "paddle/extension.h"
#define MAX_BSZ 512
struct msgdata {
long mtype; // NOLINT
int mtext[MAX_BSZ + 2]; // stop_flag, bsz, tokens
};
struct msgdatakv {
long mtype; // NOLINT
int mtext[MAX_BSZ * 3 + 2]; // encoder_count, layer_id, bid- pair
};

View File

@@ -17,6 +17,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
void DraftModelPostprocess(const paddle::Tensor& base_model_draft_tokens,
const paddle::Tensor& base_model_seq_lens_this_time,
const paddle::Tensor& base_model_seq_lens_encoder,
@@ -37,7 +41,7 @@ void DraftModelPostprocess(const paddle::Tensor& base_model_draft_tokens,
PADDLE_ENFORCE_XDNN_SUCCESS(r, "");
}
PD_BUILD_OP(draft_model_postprocess)
PD_BUILD_STATIC_OP(draft_model_postprocess)
.Inputs({"base_model_draft_tokens",
"base_model_seq_lens_this_time",
"base_model_seq_lens_encoder",

View File

@@ -17,6 +17,10 @@
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const paddle::Tensor& input_ids,
@@ -90,7 +94,7 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
}
PD_BUILD_OP(draft_model_preprocess)
PD_BUILD_STATIC_OP(draft_model_preprocess)
.Inputs({"draft_tokens",
"input_ids",
"stop_flags",

View File

@@ -17,6 +17,10 @@
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
void DraftModelUpdate(const paddle::Tensor& inter_next_tokens,
const paddle::Tensor& draft_tokens,
const paddle::Tensor& pre_ids,
@@ -86,7 +90,7 @@ void DraftModelUpdate(const paddle::Tensor& inter_next_tokens,
PD_CHECK(r == 0, "draft_model_update failed.");
}
PD_BUILD_OP(draft_model_update)
PD_BUILD_STATIC_OP(draft_model_update)
.Inputs({"inter_next_tokens",
"draft_tokens",
"pre_ids",

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
std::vector<paddle::Tensor> EagleGetHiddenStates(
const paddle::Tensor& input,
@@ -102,7 +106,7 @@ std::vector<paddle::Tensor> EagleGetHiddenStates(
}
}
PD_BUILD_OP(eagle_get_hidden_states)
PD_BUILD_STATIC_OP(eagle_get_hidden_states)
.Inputs({"input",
"seq_lens_this_time",
"seq_lens_encoder",

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
std::vector<paddle::Tensor> EagleGetSelfHiddenStates(
const paddle::Tensor& input,
@@ -97,7 +101,7 @@ std::vector<paddle::Tensor> EagleGetSelfHiddenStates(
}
}
PD_BUILD_OP(eagle_get_self_hidden_states)
PD_BUILD_STATIC_OP(eagle_get_self_hidden_states)
.Inputs(
{"input", "last_seq_lens_this_time", "seq_lens_this_time", "step_idx"})
.Outputs({"out"})

View File

@@ -17,6 +17,10 @@
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
void MTPStepPaddle(
const paddle::Tensor &base_model_stop_flags,
@@ -64,7 +68,7 @@ void MTPStepPaddle(
}
}
PD_BUILD_OP(mtp_step_paddle)
PD_BUILD_STATIC_OP(mtp_step_paddle)
.Inputs({"base_model_stop_flags",
"stop_flags",
"batch_drop",

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
void SpeculateClearAcceptNums(const paddle::Tensor& accept_num,
const paddle::Tensor& seq_lens_decoder) {
// printf("enter clear \n");
@@ -31,7 +35,7 @@ void SpeculateClearAcceptNums(const paddle::Tensor& accept_num,
PD_CHECK(r == 0, "speculate_clear_accept_nums_kernel failed.");
}
PD_BUILD_OP(speculate_clear_accept_nums)
PD_BUILD_STATIC_OP(speculate_clear_accept_nums)
.Inputs({"accept_num", "seq_lens_decoder"})
.Outputs({"seq_lens_decoder_out"})
.SetInplaceMap({{"seq_lens_decoder", "seq_lens_decoder_out"}})

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
std::vector<paddle::Tensor> SpeculateGetOutputPaddingOffset(
const paddle::Tensor& output_cum_offsets_tmp,
const paddle::Tensor& out_token_num,
@@ -69,7 +73,7 @@ std::vector<paddle::DataType> SpeculateGetOutputPaddingOffsetInferDtype(
return {output_cum_offsets_tmp_dtype, output_cum_offsets_tmp_dtype};
}
PD_BUILD_OP(speculate_get_output_padding_offset)
PD_BUILD_STATIC_OP(speculate_get_output_padding_offset)
.Inputs({"output_cum_offsets_tmp", "out_token_num", "seq_lens_output"})
.Outputs({"output_padding_offset", "output_cum_offsets"})
.Attrs({"max_seq_len: int"})

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
std::vector<paddle::Tensor> SpeculateGetPaddingOffset(
const paddle::Tensor& input_ids,
const paddle::Tensor& draft_tokens,
@@ -110,7 +114,7 @@ std::vector<paddle::DataType> SpeculateGetPaddingOffsetInferDtype(
seq_len_dtype};
}
PD_BUILD_OP(speculate_get_padding_offset)
PD_BUILD_STATIC_OP(speculate_get_padding_offset)
.Inputs({"input_ids",
"draft_tokens",
"cum_offsets",

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
std::vector<paddle::Tensor> SpeculateGetSeqLensOutput(
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_encoder,
@@ -61,7 +65,7 @@ std::vector<paddle::DataType> SpeculateGetSeqLensOutputInferDtype(
return {seq_lens_this_time_dtype};
}
PD_BUILD_OP(speculate_get_seq_lens_output)
PD_BUILD_STATIC_OP(speculate_get_seq_lens_output)
.Inputs({"seq_lens_this_time", "seq_lens_encoder", "seq_lens_decoder"})
.Outputs({"seq_lens_output"})
.SetKernelFn(PD_KERNEL(SpeculateGetSeqLensOutput))

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
void SpeculateSetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
const paddle::Tensor &accept_tokens,
const paddle::Tensor &accept_num,
@@ -53,7 +57,7 @@ void SpeculateSetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
PD_CHECK(r == 0, "speculate_clear_accept_nums_kernel failed.");
}
PD_BUILD_OP(speculate_set_value_by_flags_and_idx)
PD_BUILD_STATIC_OP(speculate_set_value_by_flags_and_idx)
.Inputs({"pre_ids_all",
"accept_tokens",
"accept_num",

View File

@@ -17,6 +17,10 @@
#include "speculate_msg.h" // NOLINT
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
// 为不修改接口调用方式,入参暂不改变
void SpeculateStepSchedule(
const paddle::Tensor &stop_flags,
@@ -150,7 +154,7 @@ void SpeculateStepSchedule(
}
}
PD_BUILD_OP(speculate_step_reschedule)
PD_BUILD_STATIC_OP(speculate_step_reschedule)
.Inputs({"stop_flags",
"seq_lens_this_time",
"ori_seq_lens_encoder",

View File

@@ -17,20 +17,25 @@
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
void TokenPenaltyMultiScores(const paddle::Tensor& pre_ids,
const paddle::Tensor& logits,
const paddle::Tensor& penalty_scores,
const paddle::Tensor& frequency_scores,
const paddle::Tensor& presence_scores,
const paddle::Tensor& temperatures,
const paddle::Tensor& bad_tokens,
const paddle::Tensor& cur_len,
const paddle::Tensor& min_len,
const paddle::Tensor& eos_token_id,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& output_padding_offset,
const paddle::Tensor& output_cum_offsets,
const int max_seq_len) {
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
void SpeculateTokenPenaltyMultiScores(
const paddle::Tensor& pre_ids,
const paddle::Tensor& logits,
const paddle::Tensor& penalty_scores,
const paddle::Tensor& frequency_scores,
const paddle::Tensor& presence_scores,
const paddle::Tensor& temperatures,
const paddle::Tensor& bad_tokens,
const paddle::Tensor& cur_len,
const paddle::Tensor& min_len,
const paddle::Tensor& eos_token_id,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& output_padding_offset,
const paddle::Tensor& output_cum_offsets,
const int max_seq_len) {
namespace api = baidu::xpu::api;
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place);
@@ -137,7 +142,7 @@ void TokenPenaltyMultiScores(const paddle::Tensor& pre_ids,
}
}
PD_BUILD_OP(speculate_get_token_penalty_multi_scores)
PD_BUILD_STATIC_OP(speculate_get_token_penalty_multi_scores)
.Inputs({"pre_ids",
"logits",
"penalty_scores",
@@ -154,4 +159,4 @@ PD_BUILD_OP(speculate_get_token_penalty_multi_scores)
.Outputs({"logits_out"})
.Attrs({"max_seq_len: int"})
.SetInplaceMap({{"logits", "logits_out"}})
.SetKernelFn(PD_KERNEL(TokenPenaltyMultiScores));
.SetKernelFn(PD_KERNEL(SpeculateTokenPenaltyMultiScores));

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
@@ -66,7 +70,7 @@ void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
}
PD_BUILD_OP(speculate_update_v3)
PD_BUILD_STATIC_OP(speculate_update_v3)
.Inputs({"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",

View File

@@ -17,10 +17,13 @@
#include "paddle/common/flags.h"
#include "paddle/extension.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "ops/utility/debug.h"
#include "xpu/internal/infra_op.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
namespace api = baidu::xpu::api;
void SpeculateVerify(const paddle::Tensor &accept_tokens,
@@ -221,7 +224,7 @@ void SpeculateVerify(const paddle::Tensor &accept_tokens,
}
}
PD_BUILD_OP(speculate_verify)
PD_BUILD_STATIC_OP(speculate_verify)
.Inputs({"accept_tokens",
"accept_num",
"step_idx",

View File

@@ -16,6 +16,10 @@
#include "paddle/extension.h"
#include "xpu/plugin.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
#define FIXED_TOPK_BASE(topk, ...) \
case (topk): { \
constexpr auto kTopK = topk; \
@@ -149,7 +153,7 @@ std::vector<paddle::DataType> TopPCandidatesInferDtype(
return {probs_dtype, paddle::DataType::INT64, paddle::DataType::INT32};
}
PD_BUILD_OP(top_p_candidates)
PD_BUILD_STATIC_OP(top_p_candidates)
.Inputs({"probs", "top_p", "output_padding_offset"})
.Outputs({"verify_scores", "verify_tokens", "actual_candidate_lens"})
.Attrs({"candidates_len: int", "max_seq_len: int"})

View File

@@ -0,0 +1,91 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ops/pybind/pybind.h"
#include "ops/remote_cache_kv_ipc.h"
#include "ops/utility/env.h"
#include "paddle/extension.h"
XPU_DECLARE_BOOL(fmt_write_cache_completed_signal, false);
using cache_write_complete_signal_type =
RemoteCacheKvIpc::save_cache_kv_complete_signal_layerwise_meta_data;
paddle::Tensor OpenShmAndGetMetaSignalFunc(const int rank,
const bool keep_pd_step_flag) {
cache_write_complete_signal_type kv_signal_metadata;
const char *fmt_write_cache_completed_signal_str =
std::getenv("FLAGS_fmt_write_cache_completed_signal");
if (fmt_write_cache_completed_signal_str &&
(std::strcmp(fmt_write_cache_completed_signal_str, "true") == 0 ||
std::strcmp(fmt_write_cache_completed_signal_str, "1") == 0)) {
kv_signal_metadata =
RemoteCacheKvIpc::open_shm_and_get_complete_signal_meta_data(
rank, keep_pd_step_flag);
}
auto kv_signal_metadata_out =
paddle::full({3}, -1, paddle::DataType::INT64, paddle::CPUPlace());
kv_signal_metadata_out.data<int64_t>()[0] =
static_cast<int64_t>(kv_signal_metadata.layer_id);
kv_signal_metadata_out.data<int64_t>()[1] =
reinterpret_cast<int64_t>(kv_signal_metadata.shm_ptr);
kv_signal_metadata_out.data<int64_t>()[2] =
static_cast<int64_t>(kv_signal_metadata.shm_fd);
return kv_signal_metadata_out;
}
void InitKVSignalPerQuery(const paddle::Tensor &seq_lens_encoder_tensor,
const paddle::Tensor &seq_lens_this_time_tensor,
const paddle::Tensor &seq_lens_decoder_tensor,
const int rank,
const int num_layers) {
if (FLAGS_fmt_write_cache_completed_signal) {
int real_bsz = seq_lens_this_time_tensor.dims()[0];
// GPU init, cp to cpu?
auto seq_lens_encoder_cpu =
seq_lens_encoder_tensor.copy_to(paddle::CPUPlace(), false);
auto seq_lens_decoder_cpu =
seq_lens_decoder_tensor.copy_to(paddle::CPUPlace(), false);
RemoteCacheKvIpc::kv_complete_signal_meta_data_per_query.init(
seq_lens_encoder_cpu.data<int>(),
seq_lens_decoder_cpu.data<int>(),
rank,
num_layers,
real_bsz);
}
}
std::vector<paddle::Tensor> OpenShmAndGetMetaSignal(
const int rank, const bool keep_pd_step_flag) {
return {OpenShmAndGetMetaSignalFunc(rank, keep_pd_step_flag)};
}
std::vector<std::vector<int64_t>> OpenShmAndGetMetaSignalShape(
const int rank, const bool keep_pd_step_flag) {
return {{3}};
}
std::vector<paddle::DataType> OpenShmAndGetMetaSignalDtype(
const int rank, const bool keep_pd_step_flag) {
return {paddle::DataType::INT64};
}
PD_BUILD_OP(open_shm_and_get_meta_signal)
.Inputs({})
.Outputs({"kv_signal_metadata"})
.Attrs({"rank: int", "keep_pd_step_flag: bool"})
.SetKernelFn(PD_KERNEL(OpenShmAndGetMetaSignal))
.SetInferShapeFn(PD_INFER_SHAPE(OpenShmAndGetMetaSignalShape))
.SetInferDtypeFn(PD_INFER_DTYPE(OpenShmAndGetMetaSignalDtype));

View File

@@ -0,0 +1,46 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/mman.h> // NOLINT
#include "cuda_runtime_api.h" // NOLINT
#include "paddle/extension.h"
#include "xpu/runtime.h"
#include "ops/pybind/pybind.h"
void check_xpu_error(int error) {
if (error != XPU_SUCCESS) {
throw XPUError(error);
}
}
// 封装xpu_host_alloc的Python函数
uintptr_t custom_xpu_host_alloc(size_t size, unsigned int flags) {
void* ptr = nullptr;
// check_xpu_error(xpu_host_alloc(&ptr, size, flags));
ptr = malloc(size);
PD_CHECK(ptr != nullptr);
PD_CHECK(mlock(ptr, size) == 0);
return reinterpret_cast<uintptr_t>(ptr);
}
// 封装xpu_host_free的Python函数
void custom_xpu_host_free(uintptr_t ptr) {
check_xpu_error(xpu_host_free(reinterpret_cast<void*>(ptr)));
}
// 封装cudaHostRegister的Python函数将可分页内存注册为锁页的
void xpu_cuda_host_register(uintptr_t ptr, size_t size, unsigned int flags) {
cudaError_t e = cudaHostRegister(reinterpret_cast<void*>(ptr), size, flags);
PD_CHECK(e == cudaSuccess, cudaGetErrorString(e));
}

Some files were not shown because too many files have changed in this diff Show More