mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
Add YOLOv5Face model support (#38)
* update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * Add YOLOv5Face Model support * fixed examples/vision typos * fixed runtime_option print func bugs
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -12,3 +12,5 @@ fastdeploy.egg-info
|
|||||||
fastdeploy/version.py
|
fastdeploy/version.py
|
||||||
fastdeploy/LICENSE*
|
fastdeploy/LICENSE*
|
||||||
fastdeploy/ThirdPartyNotices*
|
fastdeploy/ThirdPartyNotices*
|
||||||
|
*.so*
|
||||||
|
fastdeploy/libs/third_libs
|
||||||
|
53
examples/vision/deepcam_yolov5face.cc
Normal file
53
examples/vision/deepcam_yolov5face.cc
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
namespace vis = fastdeploy::vision;
|
||||||
|
|
||||||
|
std::string model_file = "../resources/models/yolov5s-face.onnx";
|
||||||
|
std::string img_path = "../resources/images/test_face_det.jpg";
|
||||||
|
std::string vis_path =
|
||||||
|
"../resources/outputs/deepcam_yolov5face_vis_result.jpg";
|
||||||
|
|
||||||
|
auto model = vis::deepcam::YOLOv5Face(model_file);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Init Failed! Model: " << model_file << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Init Done! Model:" << model_file << std::endl;
|
||||||
|
}
|
||||||
|
model.EnableDebug();
|
||||||
|
|
||||||
|
cv::Mat im = cv::imread(img_path);
|
||||||
|
cv::Mat vis_im = im.clone();
|
||||||
|
|
||||||
|
vis::FaceDetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res, 0.1f, 0.3f)) {
|
||||||
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Prediction Done!" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 输出预测框结果
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
|
||||||
|
// 可视化预测结果
|
||||||
|
vis::Visualize::VisFaceDetection(&vis_im, res, 2, 0.3f);
|
||||||
|
cv::imwrite(vis_path, vis_im);
|
||||||
|
std::cout << "Detect Done! Saved: " << vis_path << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
@@ -32,6 +32,8 @@ def RuntimeOptionStr(runtime_option):
|
|||||||
for attr in attrs:
|
for attr in attrs:
|
||||||
if attr.startswith("__"):
|
if attr.startswith("__"):
|
||||||
continue
|
continue
|
||||||
|
if hasattr(getattr(runtime_option, attr), "__call__"):
|
||||||
|
continue
|
||||||
message += " {} : {}\t\n".format(attr, getattr(runtime_option, attr))
|
message += " {} : {}\t\n".format(attr, getattr(runtime_option, attr))
|
||||||
message.strip("\n")
|
message.strip("\n")
|
||||||
message += ")"
|
message += ")"
|
||||||
|
@@ -15,16 +15,17 @@
|
|||||||
|
|
||||||
#include "fastdeploy/core/config.h"
|
#include "fastdeploy/core/config.h"
|
||||||
#ifdef ENABLE_VISION
|
#ifdef ENABLE_VISION
|
||||||
|
#include "fastdeploy/vision/deepcam/yolov5face.h"
|
||||||
#include "fastdeploy/vision/megvii/yolox.h"
|
#include "fastdeploy/vision/megvii/yolox.h"
|
||||||
#include "fastdeploy/vision/meituan/yolov6.h"
|
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||||
#include "fastdeploy/vision/ppcls/model.h"
|
#include "fastdeploy/vision/ppcls/model.h"
|
||||||
#include "fastdeploy/vision/ppdet/ppyoloe.h"
|
#include "fastdeploy/vision/ppdet/ppyoloe.h"
|
||||||
#include "fastdeploy/vision/rangilyu/nanodet_plus.h"
|
|
||||||
#include "fastdeploy/vision/ppseg/model.h"
|
#include "fastdeploy/vision/ppseg/model.h"
|
||||||
|
#include "fastdeploy/vision/rangilyu/nanodet_plus.h"
|
||||||
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
||||||
|
#include "fastdeploy/vision/wongkinyiu/scaledyolov4.h"
|
||||||
#include "fastdeploy/vision/wongkinyiu/yolor.h"
|
#include "fastdeploy/vision/wongkinyiu/yolor.h"
|
||||||
#include "fastdeploy/vision/wongkinyiu/yolov7.h"
|
#include "fastdeploy/vision/wongkinyiu/yolov7.h"
|
||||||
#include "fastdeploy/vision/wongkinyiu/scaledyolov4.h"
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include "fastdeploy/vision/visualize/visualize.h"
|
#include "fastdeploy/vision/visualize/visualize.h"
|
||||||
|
@@ -22,4 +22,5 @@ from . import meituan
|
|||||||
from . import megvii
|
from . import megvii
|
||||||
from . import visualize
|
from . import visualize
|
||||||
from . import wongkinyiu
|
from . import wongkinyiu
|
||||||
|
from . import deepcam
|
||||||
from . import rangilyu
|
from . import rangilyu
|
||||||
|
@@ -72,6 +72,73 @@ std::string DetectionResult::Str() {
|
|||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
FaceDetectionResult::FaceDetectionResult(const FaceDetectionResult& res) {
|
||||||
|
boxes.assign(res.boxes.begin(), res.boxes.end());
|
||||||
|
landmarks.assign(res.landmarks.begin(), res.landmarks.end());
|
||||||
|
scores.assign(res.scores.begin(), res.scores.end());
|
||||||
|
landmarks_per_face = res.landmarks_per_face;
|
||||||
|
}
|
||||||
|
|
||||||
|
void FaceDetectionResult::Clear() {
|
||||||
|
std::vector<std::array<float, 4>>().swap(boxes);
|
||||||
|
std::vector<float>().swap(scores);
|
||||||
|
std::vector<std::array<float, 2>>().swap(landmarks);
|
||||||
|
landmarks_per_face = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void FaceDetectionResult::Reserve(int size) {
|
||||||
|
boxes.reserve(size);
|
||||||
|
scores.reserve(size);
|
||||||
|
if (landmarks_per_face > 0) {
|
||||||
|
landmarks.reserve(size * landmarks_per_face);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void FaceDetectionResult::Resize(int size) {
|
||||||
|
boxes.resize(size);
|
||||||
|
scores.resize(size);
|
||||||
|
if (landmarks_per_face > 0) {
|
||||||
|
landmarks.resize(size * landmarks_per_face);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string FaceDetectionResult::Str() {
|
||||||
|
std::string out;
|
||||||
|
// format without landmarks
|
||||||
|
if (landmarks_per_face <= 0) {
|
||||||
|
out = "FaceDetectionResult: [xmin, ymin, xmax, ymax, score]\n";
|
||||||
|
for (size_t i = 0; i < boxes.size(); ++i) {
|
||||||
|
out = out + std::to_string(boxes[i][0]) + "," +
|
||||||
|
std::to_string(boxes[i][1]) + ", " + std::to_string(boxes[i][2]) +
|
||||||
|
", " + std::to_string(boxes[i][3]) + ", " +
|
||||||
|
std::to_string(scores[i]) + "\n";
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
// format with landmarks
|
||||||
|
FDASSERT((landmarks.size() == boxes.size() * landmarks_per_face),
|
||||||
|
"The size of landmarks != boxes.size * landmarks_per_face.");
|
||||||
|
out = "FaceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x " +
|
||||||
|
std::to_string(landmarks_per_face) + "]\n";
|
||||||
|
for (size_t i = 0; i < boxes.size(); ++i) {
|
||||||
|
out = out + std::to_string(boxes[i][0]) + "," +
|
||||||
|
std::to_string(boxes[i][1]) + ", " + std::to_string(boxes[i][2]) +
|
||||||
|
", " + std::to_string(boxes[i][3]) + ", " +
|
||||||
|
std::to_string(scores[i]) + ", ";
|
||||||
|
for (size_t j = 0; j < landmarks_per_face; ++j) {
|
||||||
|
out = out + "(" +
|
||||||
|
std::to_string(landmarks[i * landmarks_per_face + j][0]) + "," +
|
||||||
|
std::to_string(landmarks[i * landmarks_per_face + j][1]);
|
||||||
|
if (j < landmarks_per_face - 1) {
|
||||||
|
out = out + "), ";
|
||||||
|
} else {
|
||||||
|
out = out + ")\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
void SegmentationResult::Clear() {
|
void SegmentationResult::Clear() {
|
||||||
std::vector<std::vector<int64_t>>().swap(masks);
|
std::vector<std::vector<int64_t>>().swap(masks);
|
||||||
}
|
}
|
||||||
|
@@ -21,7 +21,8 @@ enum FASTDEPLOY_DECL ResultType {
|
|||||||
UNKNOWN_RESULT,
|
UNKNOWN_RESULT,
|
||||||
CLASSIFY,
|
CLASSIFY,
|
||||||
DETECTION,
|
DETECTION,
|
||||||
SEGMENTATION
|
SEGMENTATION,
|
||||||
|
FACE_DETECTION
|
||||||
};
|
};
|
||||||
|
|
||||||
struct FASTDEPLOY_DECL BaseResult {
|
struct FASTDEPLOY_DECL BaseResult {
|
||||||
@@ -56,6 +57,31 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
|
|||||||
std::string Str();
|
std::string Str();
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct FASTDEPLOY_DECL FaceDetectionResult : public BaseResult {
|
||||||
|
// box: xmin, ymin, xmax, ymax
|
||||||
|
std::vector<std::array<float, 4>> boxes;
|
||||||
|
// landmark: x, y, landmarks may empty if the
|
||||||
|
// model don't detect face with landmarks.
|
||||||
|
// Note, one face might have multiple landmarks,
|
||||||
|
// such as 5/19/21/68/98/..., etc.
|
||||||
|
std::vector<std::array<float, 2>> landmarks;
|
||||||
|
std::vector<float> scores;
|
||||||
|
ResultType type = ResultType::FACE_DETECTION;
|
||||||
|
// set landmarks_per_face manually in your post processes.
|
||||||
|
int landmarks_per_face;
|
||||||
|
|
||||||
|
FaceDetectionResult() { landmarks_per_face = 0; }
|
||||||
|
FaceDetectionResult(const FaceDetectionResult& res);
|
||||||
|
|
||||||
|
void Clear();
|
||||||
|
|
||||||
|
void Reserve(int size);
|
||||||
|
|
||||||
|
void Resize(int size);
|
||||||
|
|
||||||
|
std::string Str();
|
||||||
|
};
|
||||||
|
|
||||||
struct FASTDEPLOY_DECL SegmentationResult : public BaseResult {
|
struct FASTDEPLOY_DECL SegmentationResult : public BaseResult {
|
||||||
// mask
|
// mask
|
||||||
std::vector<std::vector<int64_t>> masks;
|
std::vector<std::vector<int64_t>> masks;
|
||||||
|
117
fastdeploy/vision/deepcam/__init__.py
Normal file
117
fastdeploy/vision/deepcam/__init__.py
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
import logging
|
||||||
|
from ... import FastDeployModel, Frontend
|
||||||
|
from ... import fastdeploy_main as C
|
||||||
|
|
||||||
|
|
||||||
|
class YOLOv5Face(FastDeployModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=Frontend.ONNX):
|
||||||
|
# 调用基函数进行backend_option的初始化
|
||||||
|
# 初始化后的option保存在self._runtime_option
|
||||||
|
super(YOLOv5Face, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.deepcam.YOLOv5Face(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
# 通过self.initialized判断整个模型的初始化是否成功
|
||||||
|
assert self.initialized, "YOLOv5Face initialize failed."
|
||||||
|
|
||||||
|
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||||||
|
return self._model.predict(input_image, conf_threshold,
|
||||||
|
nms_iou_threshold)
|
||||||
|
|
||||||
|
# 一些跟YOLOv5Face模型有关的属性封装
|
||||||
|
# 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
|
||||||
|
@property
|
||||||
|
def size(self):
|
||||||
|
return self._model.size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def padding_value(self):
|
||||||
|
return self._model.padding_value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_no_pad(self):
|
||||||
|
return self._model.is_no_pad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_mini_pad(self):
|
||||||
|
return self._model.is_mini_pad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_scale_up(self):
|
||||||
|
return self._model.is_scale_up
|
||||||
|
|
||||||
|
@property
|
||||||
|
def stride(self):
|
||||||
|
return self._model.stride
|
||||||
|
|
||||||
|
@property
|
||||||
|
def landmarks_per_face(self):
|
||||||
|
return self._model.landmarks_per_face
|
||||||
|
|
||||||
|
@size.setter
|
||||||
|
def size(self, wh):
|
||||||
|
assert isinstance(wh, [list, tuple]),\
|
||||||
|
"The value to set `size` must be type of tuple or list."
|
||||||
|
assert len(wh) == 2,\
|
||||||
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||||
|
len(wh))
|
||||||
|
self._model.size = wh
|
||||||
|
|
||||||
|
@padding_value.setter
|
||||||
|
def padding_value(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
list), "The value to set `padding_value` must be type of list."
|
||||||
|
self._model.padding_value = value
|
||||||
|
|
||||||
|
@is_no_pad.setter
|
||||||
|
def is_no_pad(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value, bool), "The value to set `is_no_pad` must be type of bool."
|
||||||
|
self._model.is_no_pad = value
|
||||||
|
|
||||||
|
@is_mini_pad.setter
|
||||||
|
def is_mini_pad(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
bool), "The value to set `is_mini_pad` must be type of bool."
|
||||||
|
self._model.is_mini_pad = value
|
||||||
|
|
||||||
|
@is_scale_up.setter
|
||||||
|
def is_scale_up(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
bool), "The value to set `is_scale_up` must be type of bool."
|
||||||
|
self._model.is_scale_up = value
|
||||||
|
|
||||||
|
@stride.setter
|
||||||
|
def stride(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value, int), "The value to set `stride` must be type of int."
|
||||||
|
self._model.stride = value
|
||||||
|
|
||||||
|
@landmarks_per_face.setter
|
||||||
|
def landmarks_per_face(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
int), "The value to set `landmarks_per_face` must be type of int."
|
||||||
|
self._model.landmarks_per_face = value
|
43
fastdeploy/vision/deepcam/deepcam_pybind.cc
Normal file
43
fastdeploy/vision/deepcam/deepcam_pybind.cc
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/pybind/main.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
void BindDeepCam(pybind11::module& m) {
|
||||||
|
auto deepcam_module =
|
||||||
|
m.def_submodule("deepcam", "https://github.com/deepcam-cn/yolov5-face");
|
||||||
|
pybind11::class_<vision::deepcam::YOLOv5Face, FastDeployModel>(deepcam_module,
|
||||||
|
"YOLOv5Face")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption, Frontend>())
|
||||||
|
.def("predict",
|
||||||
|
[](vision::deepcam::YOLOv5Face& self, pybind11::array& data,
|
||||||
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
|
auto mat = PyArrayToCvMat(data);
|
||||||
|
vision::FaceDetectionResult res;
|
||||||
|
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
|
||||||
|
return res;
|
||||||
|
})
|
||||||
|
.def_readwrite("size", &vision::deepcam::YOLOv5Face::size)
|
||||||
|
.def_readwrite("padding_value",
|
||||||
|
&vision::deepcam::YOLOv5Face::padding_value)
|
||||||
|
.def_readwrite("is_mini_pad", &vision::deepcam::YOLOv5Face::is_mini_pad)
|
||||||
|
.def_readwrite("is_no_pad", &vision::deepcam::YOLOv5Face::is_no_pad)
|
||||||
|
.def_readwrite("is_scale_up", &vision::deepcam::YOLOv5Face::is_scale_up)
|
||||||
|
.def_readwrite("stride", &vision::deepcam::YOLOv5Face::stride)
|
||||||
|
.def_readwrite("landmarks_per_face",
|
||||||
|
&vision::deepcam::YOLOv5Face::landmarks_per_face);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace fastdeploy
|
292
fastdeploy/vision/deepcam/yolov5face.cc
Normal file
292
fastdeploy/vision/deepcam/yolov5face.cc
Normal file
@@ -0,0 +1,292 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/deepcam/yolov5face.h"
|
||||||
|
#include "fastdeploy/utils/perf.h"
|
||||||
|
#include "fastdeploy/vision/utils/utils.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace deepcam {
|
||||||
|
|
||||||
|
void LetterBox(Mat* mat, std::vector<int> size, std::vector<float> color,
|
||||||
|
bool _auto, bool scale_fill = false, bool scale_up = true,
|
||||||
|
int stride = 32) {
|
||||||
|
float scale =
|
||||||
|
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
|
||||||
|
if (!scale_up) {
|
||||||
|
scale = std::min(scale, 1.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
int resize_h = int(round(mat->Height() * scale));
|
||||||
|
int resize_w = int(round(mat->Width() * scale));
|
||||||
|
|
||||||
|
int pad_w = size[0] - resize_w;
|
||||||
|
int pad_h = size[1] - resize_h;
|
||||||
|
if (_auto) {
|
||||||
|
pad_h = pad_h % stride;
|
||||||
|
pad_w = pad_w % stride;
|
||||||
|
} else if (scale_fill) {
|
||||||
|
pad_h = 0;
|
||||||
|
pad_w = 0;
|
||||||
|
resize_h = size[1];
|
||||||
|
resize_w = size[0];
|
||||||
|
}
|
||||||
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||||
|
Resize::Run(mat, resize_w, resize_h);
|
||||||
|
}
|
||||||
|
if (pad_h > 0 || pad_w > 0) {
|
||||||
|
float half_h = pad_h * 1.0 / 2;
|
||||||
|
int top = int(round(half_h - 0.1));
|
||||||
|
int bottom = int(round(half_h + 0.1));
|
||||||
|
float half_w = pad_w * 1.0 / 2;
|
||||||
|
int left = int(round(half_w - 0.1));
|
||||||
|
int right = int(round(half_w + 0.1));
|
||||||
|
Pad::Run(mat, top, bottom, left, right, color);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
YOLOv5Face::YOLOv5Face(const std::string& model_file,
|
||||||
|
const std::string& params_file,
|
||||||
|
const RuntimeOption& custom_option,
|
||||||
|
const Frontend& model_format) {
|
||||||
|
if (model_format == Frontend::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
}
|
||||||
|
runtime_option = custom_option;
|
||||||
|
runtime_option.model_format = model_format;
|
||||||
|
runtime_option.model_file = model_file;
|
||||||
|
runtime_option.params_file = params_file;
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv5Face::Initialize() {
|
||||||
|
// parameters for preprocess
|
||||||
|
size = {640, 640};
|
||||||
|
padding_value = {114.0, 114.0, 114.0};
|
||||||
|
is_mini_pad = false;
|
||||||
|
is_no_pad = false;
|
||||||
|
is_scale_up = false;
|
||||||
|
stride = 32;
|
||||||
|
landmarks_per_face = 5;
|
||||||
|
|
||||||
|
if (!InitRuntime()) {
|
||||||
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
// Check if the input shape is dynamic after Runtime already initialized,
|
||||||
|
// Note that, We need to force is_mini_pad 'false' to keep static
|
||||||
|
// shape after padding (LetterBox) when the is_dynamic_input_ is 'false'.
|
||||||
|
is_dynamic_input_ = false;
|
||||||
|
auto shape = InputInfoOfRuntime(0).shape;
|
||||||
|
for (int i = 0; i < shape.size(); ++i) {
|
||||||
|
// if height or width is dynamic
|
||||||
|
if (i >= 2 && shape[i] <= 0) {
|
||||||
|
is_dynamic_input_ = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!is_dynamic_input_) {
|
||||||
|
is_mini_pad = false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv5Face::Preprocess(
|
||||||
|
Mat* mat, FDTensor* output,
|
||||||
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||||
|
// process after image load
|
||||||
|
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
||||||
|
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
||||||
|
if (ratio != 1.0) { // always true
|
||||||
|
int interp = cv::INTER_AREA;
|
||||||
|
if (ratio > 1.0) {
|
||||||
|
interp = cv::INTER_LINEAR;
|
||||||
|
}
|
||||||
|
int resize_h = int(round(static_cast<float>(mat->Height()) * ratio));
|
||||||
|
int resize_w = int(round(static_cast<float>(mat->Width()) * ratio));
|
||||||
|
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
|
||||||
|
}
|
||||||
|
// yolov5face's preprocess steps
|
||||||
|
// 1. letterbox
|
||||||
|
// 2. BGR->RGB
|
||||||
|
// 3. HWC->CHW
|
||||||
|
LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
|
||||||
|
stride);
|
||||||
|
BGR2RGB::Run(mat);
|
||||||
|
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
|
||||||
|
// std::vector<float>(mat->Channels(), 1.0));
|
||||||
|
// Compute `result = mat * alpha + beta` directly by channel
|
||||||
|
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
||||||
|
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
||||||
|
Convert::Run(mat, alpha, beta);
|
||||||
|
|
||||||
|
// Record output shape of preprocessed image
|
||||||
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||||
|
static_cast<float>(mat->Width())};
|
||||||
|
|
||||||
|
HWC2CHW::Run(mat);
|
||||||
|
Cast::Run(mat, "float");
|
||||||
|
mat->ShareWithTensor(output);
|
||||||
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv5Face::Postprocess(
|
||||||
|
FDTensor& infer_result, FaceDetectionResult* result,
|
||||||
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||||
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
|
// infer_result: (1,n,16) 16=4+1+10+1
|
||||||
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
||||||
|
result->Clear();
|
||||||
|
// must be setup landmarks_per_face before reserve
|
||||||
|
result->landmarks_per_face = landmarks_per_face;
|
||||||
|
result->Reserve(infer_result.shape[1]);
|
||||||
|
if (infer_result.dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
float* data = static_cast<float*>(infer_result.Data());
|
||||||
|
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
||||||
|
float* reg_cls_ptr = data + (i * infer_result.shape[2]);
|
||||||
|
float obj_conf = reg_cls_ptr[4];
|
||||||
|
float cls_conf = reg_cls_ptr[15];
|
||||||
|
float confidence = obj_conf * cls_conf;
|
||||||
|
// filter boxes by conf_threshold
|
||||||
|
if (confidence <= conf_threshold) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
float x = reg_cls_ptr[0];
|
||||||
|
float y = reg_cls_ptr[1];
|
||||||
|
float w = reg_cls_ptr[2];
|
||||||
|
float h = reg_cls_ptr[3];
|
||||||
|
|
||||||
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
||||||
|
result->boxes.emplace_back(std::array<float, 4>{
|
||||||
|
(x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)});
|
||||||
|
result->scores.push_back(confidence);
|
||||||
|
// decode landmarks (default 5 landmarks)
|
||||||
|
if (landmarks_per_face > 0) {
|
||||||
|
float* landmarks_ptr = reg_cls_ptr + 5;
|
||||||
|
for (size_t j = 0; j < landmarks_per_face * 2; j += 2) {
|
||||||
|
result->landmarks.emplace_back(
|
||||||
|
std::array<float, 2>{landmarks_ptr[j], landmarks_ptr[j + 1]});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (result->boxes.size() == 0) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
utils::NMS(result, nms_iou_threshold);
|
||||||
|
|
||||||
|
// scale the boxes to the origin image shape
|
||||||
|
auto iter_out = im_info.find("output_shape");
|
||||||
|
auto iter_ipt = im_info.find("input_shape");
|
||||||
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
||||||
|
"Cannot find input_shape or output_shape from im_info.");
|
||||||
|
float out_h = iter_out->second[0];
|
||||||
|
float out_w = iter_out->second[1];
|
||||||
|
float ipt_h = iter_ipt->second[0];
|
||||||
|
float ipt_w = iter_ipt->second[1];
|
||||||
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
||||||
|
float pad_h = (out_h - ipt_h * scale) / 2.f;
|
||||||
|
float pad_w = (out_w - ipt_w * scale) / 2.f;
|
||||||
|
if (is_mini_pad) {
|
||||||
|
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
|
||||||
|
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
|
||||||
|
}
|
||||||
|
// scale and clip box
|
||||||
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||||
|
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
|
||||||
|
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
|
||||||
|
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
|
||||||
|
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
|
||||||
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
||||||
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
||||||
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
||||||
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
||||||
|
}
|
||||||
|
// scale and clip landmarks
|
||||||
|
for (size_t i = 0; i < result->landmarks.size(); ++i) {
|
||||||
|
result->landmarks[i][0] =
|
||||||
|
std::max((result->landmarks[i][0] - pad_w) / scale, 0.0f);
|
||||||
|
result->landmarks[i][1] =
|
||||||
|
std::max((result->landmarks[i][1] - pad_h) / scale, 0.0f);
|
||||||
|
result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
|
||||||
|
result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_START(0)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
Mat mat(*im);
|
||||||
|
std::vector<FDTensor> input_tensors(1);
|
||||||
|
|
||||||
|
std::map<std::string, std::array<float, 2>> im_info;
|
||||||
|
|
||||||
|
// Record the shape of image and the shape of preprocessed image
|
||||||
|
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
||||||
|
static_cast<float>(mat.Width())};
|
||||||
|
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||||
|
static_cast<float>(mat.Width())};
|
||||||
|
|
||||||
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
||||||
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(0, "Preprocess")
|
||||||
|
TIMERECORD_START(1)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||||
|
std::vector<FDTensor> output_tensors;
|
||||||
|
if (!Infer(input_tensors, &output_tensors)) {
|
||||||
|
FDERROR << "Failed to inference." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(1, "Inference")
|
||||||
|
TIMERECORD_START(2)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
||||||
|
nms_iou_threshold)) {
|
||||||
|
FDERROR << "Failed to post process." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(2, "Postprocess")
|
||||||
|
#endif
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace deepcam
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
97
fastdeploy/vision/deepcam/yolov5face.h
Normal file
97
fastdeploy/vision/deepcam/yolov5face.h
Normal file
@@ -0,0 +1,97 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/fastdeploy_model.h"
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace deepcam {
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL YOLOv5Face : public FastDeployModel {
|
||||||
|
public:
|
||||||
|
// 当model_format为ONNX时,无需指定params_file
|
||||||
|
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||||||
|
YOLOv5Face(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const Frontend& model_format = Frontend::ONNX);
|
||||||
|
|
||||||
|
// 定义模型的名称
|
||||||
|
std::string ModelName() const { return "deepcam-cn/yolov5-face"; }
|
||||||
|
|
||||||
|
// 模型预测接口,即用户调用的接口
|
||||||
|
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||||||
|
// result 为模型预测的输出结构体
|
||||||
|
// conf_threshold 为后处理的参数
|
||||||
|
// nms_iou_threshold 为后处理的参数
|
||||||
|
virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
|
float conf_threshold = 0.25,
|
||||||
|
float nms_iou_threshold = 0.5);
|
||||||
|
|
||||||
|
// 以下为模型在预测时的一些参数,基本是前后处理所需
|
||||||
|
// 用户在创建模型后,可根据模型的要求,以及自己的需求
|
||||||
|
// 对参数进行修改
|
||||||
|
// tuple of (width, height)
|
||||||
|
std::vector<int> size;
|
||||||
|
// padding value, size should be same with Channels
|
||||||
|
std::vector<float> padding_value;
|
||||||
|
// only pad to the minimum rectange which height and width is times of stride
|
||||||
|
bool is_mini_pad;
|
||||||
|
// while is_mini_pad = false and is_no_pad = true, will resize the image to
|
||||||
|
// the set size
|
||||||
|
bool is_no_pad;
|
||||||
|
// if is_scale_up is false, the input image only can be zoom out, the maximum
|
||||||
|
// resize scale cannot exceed 1.0
|
||||||
|
bool is_scale_up;
|
||||||
|
// padding stride, for is_mini_pad
|
||||||
|
int stride;
|
||||||
|
// setup the number of landmarks for per face (if have), default 5 in
|
||||||
|
// official yolov5face note that, the outupt tensor's shape must be:
|
||||||
|
// (1,n,4+1+2*landmarks_per_face+1=box+obj+landmarks+cls)
|
||||||
|
int landmarks_per_face;
|
||||||
|
|
||||||
|
private:
|
||||||
|
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||||||
|
bool Initialize();
|
||||||
|
|
||||||
|
// 输入图像预处理操作
|
||||||
|
// Mat为FastDeploy定义的数据结构
|
||||||
|
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||||||
|
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||||||
|
bool Preprocess(Mat* mat, FDTensor* outputs,
|
||||||
|
std::map<std::string, std::array<float, 2>>* im_info);
|
||||||
|
|
||||||
|
// 后端推理结果后处理,输出给用户
|
||||||
|
// infer_result 为后端推理后的输出Tensor
|
||||||
|
// result 为模型预测的结果
|
||||||
|
// im_info 为预处理记录的信息,后处理用于还原box
|
||||||
|
// conf_threshold 后处理时过滤box的置信度阈值
|
||||||
|
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||||||
|
bool Postprocess(FDTensor& infer_result, FaceDetectionResult* result,
|
||||||
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||||
|
float conf_threshold, float nms_iou_threshold);
|
||||||
|
|
||||||
|
// 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致
|
||||||
|
bool IsDynamicInput() const { return is_dynamic_input_; }
|
||||||
|
|
||||||
|
bool is_dynamic_input_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace deepcam
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -66,6 +66,62 @@ void NMS(DetectionResult* result, float iou_threshold) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void NMS(FaceDetectionResult* result, float iou_threshold) {
|
||||||
|
utils::SortDetectionResult(result);
|
||||||
|
|
||||||
|
std::vector<float> area_of_boxes(result->boxes.size());
|
||||||
|
std::vector<int> suppressed(result->boxes.size(), 0);
|
||||||
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||||
|
area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0]) *
|
||||||
|
(result->boxes[i][3] - result->boxes[i][1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||||
|
if (suppressed[i] == 1) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
for (size_t j = i + 1; j < result->boxes.size(); ++j) {
|
||||||
|
if (suppressed[j] == 1) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
float xmin = std::max(result->boxes[i][0], result->boxes[j][0]);
|
||||||
|
float ymin = std::max(result->boxes[i][1], result->boxes[j][1]);
|
||||||
|
float xmax = std::min(result->boxes[i][2], result->boxes[j][2]);
|
||||||
|
float ymax = std::min(result->boxes[i][3], result->boxes[j][3]);
|
||||||
|
float overlap_w = std::max(0.0f, xmax - xmin);
|
||||||
|
float overlap_h = std::max(0.0f, ymax - ymin);
|
||||||
|
float overlap_area = overlap_w * overlap_h;
|
||||||
|
float overlap_ratio =
|
||||||
|
overlap_area / (area_of_boxes[i] + area_of_boxes[j] - overlap_area);
|
||||||
|
if (overlap_ratio > iou_threshold) {
|
||||||
|
suppressed[j] = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
FaceDetectionResult backup(*result);
|
||||||
|
int landmarks_per_face = result->landmarks_per_face;
|
||||||
|
|
||||||
|
result->Clear();
|
||||||
|
// don't forget to reset the landmarks_per_face
|
||||||
|
// before apply Reserve method.
|
||||||
|
result->landmarks_per_face = landmarks_per_face;
|
||||||
|
result->Reserve(suppressed.size());
|
||||||
|
for (size_t i = 0; i < suppressed.size(); ++i) {
|
||||||
|
if (suppressed[i] == 1) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
result->boxes.emplace_back(backup.boxes[i]);
|
||||||
|
result->scores.push_back(backup.scores[i]);
|
||||||
|
// landmarks (if have)
|
||||||
|
if (result->landmarks_per_face > 0) {
|
||||||
|
for (size_t j = 0; j < result->landmarks_per_face; ++j) {
|
||||||
|
result->landmarks.emplace_back(
|
||||||
|
backup.landmarks[i * result->landmarks_per_face + j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace utils
|
} // namespace utils
|
||||||
} // namespace vision
|
} // namespace vision
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
69
fastdeploy/vision/utils/sort_face_det_res.cc
Normal file
69
fastdeploy/vision/utils/sort_face_det_res.cc
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/utils/utils.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace utils {
|
||||||
|
|
||||||
|
void SortDetectionResult(FaceDetectionResult* result) {
|
||||||
|
// sort face detection results with landmarks or not.
|
||||||
|
if (result->boxes.size() == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
int landmarks_per_face = result->landmarks_per_face;
|
||||||
|
if (landmarks_per_face > 0) {
|
||||||
|
FDASSERT(
|
||||||
|
(result->landmarks.size() == result->boxes.size() * landmarks_per_face),
|
||||||
|
"The size of landmarks != boxes.size * landmarks_per_face.");
|
||||||
|
}
|
||||||
|
|
||||||
|
// argsort for scores.
|
||||||
|
std::vector<size_t> indices;
|
||||||
|
indices.resize(result->boxes.size());
|
||||||
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||||
|
indices[i] = i;
|
||||||
|
}
|
||||||
|
std::vector<float>& scores = result->scores;
|
||||||
|
std::sort(indices.begin(), indices.end(),
|
||||||
|
[&scores](size_t a, size_t b) { return scores[a] > scores[b]; });
|
||||||
|
|
||||||
|
// reorder boxes, scores, landmarks (if have).
|
||||||
|
FaceDetectionResult backup(*result);
|
||||||
|
result->Clear();
|
||||||
|
// don't forget to reset the landmarks_per_face
|
||||||
|
// before apply Reserve method.
|
||||||
|
result->landmarks_per_face = landmarks_per_face;
|
||||||
|
result->Reserve(indices.size());
|
||||||
|
if (landmarks_per_face > 0) {
|
||||||
|
for (size_t i = 0; i < indices.size(); ++i) {
|
||||||
|
result->boxes.emplace_back(backup.boxes[indices[i]]);
|
||||||
|
result->scores.push_back(backup.scores[indices[i]]);
|
||||||
|
for (size_t j = 0; j < landmarks_per_face; ++j) {
|
||||||
|
result->landmarks.emplace_back(
|
||||||
|
backup.landmarks[indices[i] * landmarks_per_face + j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (size_t i = 0; i < indices.size(); ++i) {
|
||||||
|
result->boxes.emplace_back(backup.boxes[indices[i]]);
|
||||||
|
result->scores.push_back(backup.scores[indices[i]]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace utils
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -53,9 +53,13 @@ std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
|
|||||||
|
|
||||||
void NMS(DetectionResult* output, float iou_threshold = 0.5);
|
void NMS(DetectionResult* output, float iou_threshold = 0.5);
|
||||||
|
|
||||||
|
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
|
||||||
|
|
||||||
// MergeSort
|
// MergeSort
|
||||||
void SortDetectionResult(DetectionResult* output);
|
void SortDetectionResult(DetectionResult* output);
|
||||||
|
|
||||||
|
void SortDetectionResult(FaceDetectionResult* result);
|
||||||
|
|
||||||
} // namespace utils
|
} // namespace utils
|
||||||
} // namespace vision
|
} // namespace vision
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
@@ -23,6 +23,7 @@ void BindPPSeg(pybind11::module& m);
|
|||||||
void BindUltralytics(pybind11::module& m);
|
void BindUltralytics(pybind11::module& m);
|
||||||
void BindMeituan(pybind11::module& m);
|
void BindMeituan(pybind11::module& m);
|
||||||
void BindMegvii(pybind11::module& m);
|
void BindMegvii(pybind11::module& m);
|
||||||
|
void BindDeepCam(pybind11::module& m);
|
||||||
void BindRangiLyu(pybind11::module& m);
|
void BindRangiLyu(pybind11::module& m);
|
||||||
#ifdef ENABLE_VISION_VISUALIZE
|
#ifdef ENABLE_VISION_VISUALIZE
|
||||||
void BindVisualize(pybind11::module& m);
|
void BindVisualize(pybind11::module& m);
|
||||||
@@ -44,6 +45,15 @@ void BindVision(pybind11::module& m) {
|
|||||||
.def("__repr__", &vision::DetectionResult::Str)
|
.def("__repr__", &vision::DetectionResult::Str)
|
||||||
.def("__str__", &vision::DetectionResult::Str);
|
.def("__str__", &vision::DetectionResult::Str);
|
||||||
|
|
||||||
|
pybind11::class_<vision::FaceDetectionResult>(m, "FaceDetectionResult")
|
||||||
|
.def(pybind11::init())
|
||||||
|
.def_readwrite("boxes", &vision::FaceDetectionResult::boxes)
|
||||||
|
.def_readwrite("scores", &vision::FaceDetectionResult::scores)
|
||||||
|
.def_readwrite("landmarks", &vision::FaceDetectionResult::landmarks)
|
||||||
|
.def_readwrite("landmarks_per_face",
|
||||||
|
&vision::FaceDetectionResult::landmarks_per_face)
|
||||||
|
.def("__repr__", &vision::FaceDetectionResult::Str)
|
||||||
|
.def("__str__", &vision::FaceDetectionResult::Str);
|
||||||
pybind11::class_<vision::SegmentationResult>(m, "SegmentationResult")
|
pybind11::class_<vision::SegmentationResult>(m, "SegmentationResult")
|
||||||
.def(pybind11::init())
|
.def(pybind11::init())
|
||||||
.def_readwrite("masks", &vision::SegmentationResult::masks)
|
.def_readwrite("masks", &vision::SegmentationResult::masks)
|
||||||
@@ -57,6 +67,7 @@ void BindVision(pybind11::module& m) {
|
|||||||
BindWongkinyiu(m);
|
BindWongkinyiu(m);
|
||||||
BindMeituan(m);
|
BindMeituan(m);
|
||||||
BindMegvii(m);
|
BindMegvii(m);
|
||||||
|
BindDeepCam(m);
|
||||||
BindRangiLyu(m);
|
BindRangiLyu(m);
|
||||||
#ifdef ENABLE_VISION_VISUALIZE
|
#ifdef ENABLE_VISION_VISUALIZE
|
||||||
BindVisualize(m);
|
BindVisualize(m);
|
||||||
|
@@ -21,6 +21,11 @@ def vis_detection(im_data, det_result, line_size=1, font_size=0.5):
|
|||||||
C.vision.Visualize.vis_detection(im_data, det_result, line_size, font_size)
|
C.vision.Visualize.vis_detection(im_data, det_result, line_size, font_size)
|
||||||
|
|
||||||
|
|
||||||
|
def vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5):
|
||||||
|
C.vision.Visualize.vis_face_detection(im_data, face_det_result, line_size,
|
||||||
|
font_size)
|
||||||
|
|
||||||
|
|
||||||
def vis_segmentation(im_data, seg_result, vis_im_data, num_classes=1000):
|
def vis_segmentation(im_data, seg_result, vis_im_data, num_classes=1000):
|
||||||
C.vision.Visualize.vis_segmentation(im_data, seg_result, vis_im_data,
|
C.vision.Visualize.vis_segmentation(im_data, seg_result, vis_im_data,
|
||||||
num_classes)
|
num_classes)
|
||||||
|
81
fastdeploy/vision/visualize/face_detection.cc
Normal file
81
fastdeploy/vision/visualize/face_detection.cc
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#ifdef ENABLE_VISION_VISUALIZE
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/visualize/visualize.h"
|
||||||
|
#include "opencv2/imgproc/imgproc.hpp"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
// Default only support visualize num_classes <= 1000
|
||||||
|
// If need to visualize num_classes > 1000
|
||||||
|
// Please call Visualize::GetColorMap(num_classes) first
|
||||||
|
void Visualize::VisFaceDetection(cv::Mat* im, const FaceDetectionResult& result,
|
||||||
|
int line_size, float font_size) {
|
||||||
|
auto color_map = GetColorMap();
|
||||||
|
int h = im->rows;
|
||||||
|
int w = im->cols;
|
||||||
|
|
||||||
|
bool vis_landmarks = false;
|
||||||
|
if ((result.landmarks_per_face > 0) &&
|
||||||
|
(result.boxes.size() * result.landmarks_per_face ==
|
||||||
|
result.landmarks.size())) {
|
||||||
|
vis_landmarks = true;
|
||||||
|
}
|
||||||
|
for (size_t i = 0; i < result.boxes.size(); ++i) {
|
||||||
|
cv::Rect rect(result.boxes[i][0], result.boxes[i][1],
|
||||||
|
result.boxes[i][2] - result.boxes[i][0],
|
||||||
|
result.boxes[i][3] - result.boxes[i][1]);
|
||||||
|
int color_id = i % 333;
|
||||||
|
int c0 = color_map[3 * color_id + 0];
|
||||||
|
int c1 = color_map[3 * color_id + 1];
|
||||||
|
int c2 = color_map[3 * color_id + 2];
|
||||||
|
cv::Scalar rect_color = cv::Scalar(c0, c1, c2);
|
||||||
|
std::string text = std::to_string(result.scores[i]);
|
||||||
|
if (text.size() > 4) {
|
||||||
|
text = text.substr(0, 4);
|
||||||
|
}
|
||||||
|
int font = cv::FONT_HERSHEY_SIMPLEX;
|
||||||
|
cv::Size text_size = cv::getTextSize(text, font, font_size, 1, nullptr);
|
||||||
|
cv::Point origin;
|
||||||
|
origin.x = rect.x;
|
||||||
|
origin.y = rect.y;
|
||||||
|
cv::Rect text_background =
|
||||||
|
cv::Rect(result.boxes[i][0], result.boxes[i][1] - text_size.height,
|
||||||
|
text_size.width, text_size.height);
|
||||||
|
cv::rectangle(*im, rect, rect_color, line_size);
|
||||||
|
cv::putText(*im, text, origin, font, font_size, cv::Scalar(255, 255, 255),
|
||||||
|
1);
|
||||||
|
// vis landmarks (if have)
|
||||||
|
if (vis_landmarks) {
|
||||||
|
cv::Scalar landmark_color = rect_color;
|
||||||
|
for (size_t j = 0; j < result.landmarks_per_face; ++j) {
|
||||||
|
cv::Point landmark;
|
||||||
|
landmark.x = static_cast<int>(
|
||||||
|
result.landmarks[i * result.landmarks_per_face + j][0]);
|
||||||
|
landmark.y = static_cast<int>(
|
||||||
|
result.landmarks[i * result.landmarks_per_face + j][1]);
|
||||||
|
cv::circle(*im, landmark, line_size, landmark_color, -1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
||||||
|
|
||||||
|
#endif
|
@@ -27,6 +27,8 @@ class FASTDEPLOY_DECL Visualize {
|
|||||||
static const std::vector<int>& GetColorMap(int num_classes = 1000);
|
static const std::vector<int>& GetColorMap(int num_classes = 1000);
|
||||||
static void VisDetection(cv::Mat* im, const DetectionResult& result,
|
static void VisDetection(cv::Mat* im, const DetectionResult& result,
|
||||||
int line_size = 2, float font_size = 0.5f);
|
int line_size = 2, float font_size = 0.5f);
|
||||||
|
static void VisFaceDetection(cv::Mat* im, const FaceDetectionResult& result,
|
||||||
|
int line_size = 2, float font_size = 0.5f);
|
||||||
static void VisSegmentation(const cv::Mat& im,
|
static void VisSegmentation(const cv::Mat& im,
|
||||||
const SegmentationResult& result,
|
const SegmentationResult& result,
|
||||||
cv::Mat* vis_img, const int& num_classes = 1000);
|
cv::Mat* vis_img, const int& num_classes = 1000);
|
||||||
|
@@ -25,6 +25,14 @@ void BindVisualize(pybind11::module& m) {
|
|||||||
vision::Visualize::VisDetection(&im, result, line_size,
|
vision::Visualize::VisDetection(&im, result, line_size,
|
||||||
font_size);
|
font_size);
|
||||||
})
|
})
|
||||||
|
.def_static(
|
||||||
|
"vis_face_detection",
|
||||||
|
[](pybind11::array& im_data, vision::FaceDetectionResult& result,
|
||||||
|
int line_size, float font_size) {
|
||||||
|
auto im = PyArrayToCvMat(im_data);
|
||||||
|
vision::Visualize::VisFaceDetection(&im, result, line_size,
|
||||||
|
font_size);
|
||||||
|
})
|
||||||
.def_static("vis_segmentation", [](pybind11::array& im_data,
|
.def_static("vis_segmentation", [](pybind11::array& im_data,
|
||||||
vision::SegmentationResult& result,
|
vision::SegmentationResult& result,
|
||||||
pybind11::array& vis_im_data,
|
pybind11::array& vis_im_data,
|
||||||
|
@@ -57,8 +57,10 @@ void ScaledYOLOv4::LetterBox(Mat* mat, const std::vector<int>& size,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ScaledYOLOv4::ScaledYOLOv4(const std::string& model_file, const std::string& params_file,
|
ScaledYOLOv4::ScaledYOLOv4(const std::string& model_file,
|
||||||
const RuntimeOption& custom_option, const Frontend& model_format) {
|
const std::string& params_file,
|
||||||
|
const RuntimeOption& custom_option,
|
||||||
|
const Frontend& model_format) {
|
||||||
if (model_format == Frontend::ONNX) {
|
if (model_format == Frontend::ONNX) {
|
||||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||||
@@ -90,7 +92,8 @@ bool ScaledYOLOv4::Initialize() {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ScaledYOLOv4::Preprocess(Mat* mat, FDTensor* output,
|
bool ScaledYOLOv4::Preprocess(
|
||||||
|
Mat* mat, FDTensor* output,
|
||||||
std::map<std::string, std::array<float, 2>>* im_info) {
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||||
// process after image load
|
// process after image load
|
||||||
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
||||||
@@ -199,8 +202,8 @@ bool ScaledYOLOv4::Postprocess(
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
float nms_iou_threshold) {
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
#ifdef FASTDEPLOY_DEBUG
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
TIMERECORD_START(0)
|
TIMERECORD_START(0)
|
||||||
#endif
|
#endif
|
||||||
|
@@ -25,7 +25,8 @@ class FASTDEPLOY_DECL ScaledYOLOv4 : public FastDeployModel {
|
|||||||
public:
|
public:
|
||||||
// 当model_format为ONNX时,无需指定params_file
|
// 当model_format为ONNX时,无需指定params_file
|
||||||
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||||||
ScaledYOLOv4(const std::string& model_file, const std::string& params_file = "",
|
ScaledYOLOv4(const std::string& model_file,
|
||||||
|
const std::string& params_file = "",
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
const Frontend& model_format = Frontend::ONNX);
|
const Frontend& model_format = Frontend::ONNX);
|
||||||
|
|
||||||
|
78
model_zoo/vision/yolov5face/README.md
Normal file
78
model_zoo/vision/yolov5face/README.md
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
# YOLOv5Face部署示例
|
||||||
|
|
||||||
|
当前支持模型版本为:[YOLOv5Face CommitID:4fd1ead](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead)
|
||||||
|
|
||||||
|
本文档说明如何进行[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)的快速部署推理。本目录结构如下
|
||||||
|
|
||||||
|
```
|
||||||
|
.
|
||||||
|
├── cpp # C++ 代码目录
|
||||||
|
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
|
||||||
|
│ ├── README.md # C++ 代码编译部署文档
|
||||||
|
│ └── yolov5face.cc # C++ 示例代码
|
||||||
|
├── api.md # API 说明文档
|
||||||
|
├── README.md # YOLOv5Face 部署文档
|
||||||
|
└── yolov5face.py # Python示例代码
|
||||||
|
```
|
||||||
|
|
||||||
|
## 获取ONNX文件
|
||||||
|
|
||||||
|
访问[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)官方github库,按照指引下载安装,下载`yolov5s-face.pt` 模型,利用 `export.py` 得到`onnx`格式文件。
|
||||||
|
|
||||||
|
* 下载yolov5face模型文件
|
||||||
|
```
|
||||||
|
Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q
|
||||||
|
https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing
|
||||||
|
```
|
||||||
|
|
||||||
|
* 导出onnx格式文件
|
||||||
|
```bash
|
||||||
|
PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1
|
||||||
|
```
|
||||||
|
* onnx模型简化(可选)
|
||||||
|
```bash
|
||||||
|
onnxsim yolov5s-face.onnx yolov5s-face.onnx
|
||||||
|
```
|
||||||
|
* 移动onnx文件到model_zoo/yolov5face的目录
|
||||||
|
```bash
|
||||||
|
cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 准备测试图片
|
||||||
|
准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录
|
||||||
|
|
||||||
|
## 安装FastDeploy
|
||||||
|
|
||||||
|
使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu`
|
||||||
|
```bash
|
||||||
|
# 安装fastdeploy-python工具
|
||||||
|
pip install fastdeploy-python
|
||||||
|
|
||||||
|
# 安装vision-cpu模块
|
||||||
|
fastdeploy install vision-cpu
|
||||||
|
```
|
||||||
|
|
||||||
|
## Python部署
|
||||||
|
|
||||||
|
执行如下代码即会自动下载YOLOv5Face模型和测试图片
|
||||||
|
```bash
|
||||||
|
python yolov5face.py
|
||||||
|
```
|
||||||
|
|
||||||
|
执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下
|
||||||
|
```
|
||||||
|
FaceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5]
|
||||||
|
749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470)
|
||||||
|
897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066)
|
||||||
|
281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048)
|
||||||
|
132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197)
|
||||||
|
699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794)
|
||||||
|
# ...
|
||||||
|
```
|
||||||
|
|
||||||
|
## 其它文档
|
||||||
|
|
||||||
|
- [C++部署](./cpp/README.md)
|
||||||
|
- [YOLOv5Face API文档](./api.md)
|
71
model_zoo/vision/yolov5face/api.md
Normal file
71
model_zoo/vision/yolov5face/api.md
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
# YOLOv5Face API说明
|
||||||
|
|
||||||
|
## Python API
|
||||||
|
|
||||||
|
### YOLOv5Face类
|
||||||
|
```
|
||||||
|
fastdeploy.vision.deepcam.YOLOv5Face(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX)
|
||||||
|
```
|
||||||
|
YOLOv5Face模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`yolov5s-face.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(Frontend): 模型格式
|
||||||
|
|
||||||
|
#### predict函数
|
||||||
|
> ```
|
||||||
|
> YOLOv5Face.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
|
> ```
|
||||||
|
> 模型预测结口,输入图像直接输出检测结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||||
|
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||||
|
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||||
|
|
||||||
|
示例代码参考[yolov5face.py](./yolov5face.py)
|
||||||
|
|
||||||
|
|
||||||
|
## C++ API
|
||||||
|
|
||||||
|
### YOLOv5Face类
|
||||||
|
```
|
||||||
|
fastdeploy::vision::deepcam::YOLOv5Face(
|
||||||
|
const string& model_file,
|
||||||
|
const string& params_file = "",
|
||||||
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||||
|
const Frontend& model_format = Frontend::ONNX)
|
||||||
|
```
|
||||||
|
YOLOv5Face模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`yolov5s-face.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(Frontend): 模型格式
|
||||||
|
|
||||||
|
#### Predict函数
|
||||||
|
> ```
|
||||||
|
> YOLOv5Face::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
|
> float conf_threshold = 0.25,
|
||||||
|
> float nms_iou_threshold = 0.5)
|
||||||
|
> ```
|
||||||
|
> 模型预测接口,输入图像直接输出检测结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
|
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
||||||
|
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||||
|
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||||
|
|
||||||
|
示例代码参考[cpp/yolov5face.cc](cpp/yolov5face.cc)
|
||||||
|
|
||||||
|
## 其它API使用
|
||||||
|
|
||||||
|
- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md)
|
17
model_zoo/vision/yolov5face/cpp/CMakeLists.txt
Normal file
17
model_zoo/vision/yolov5face/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
PROJECT(yolov5face_demo C CXX)
|
||||||
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.16)
|
||||||
|
|
||||||
|
# 在低版本ABI环境中,通过如下代码进行兼容性编译
|
||||||
|
# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
|
||||||
|
# 指定下载解压后的fastdeploy库路径
|
||||||
|
set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.3.0/)
|
||||||
|
|
||||||
|
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||||
|
|
||||||
|
# 添加FastDeploy依赖头文件
|
||||||
|
include_directories(${FASTDEPLOY_INCS})
|
||||||
|
|
||||||
|
add_executable(yolov5face_demo ${PROJECT_SOURCE_DIR}/yolov5face.cc)
|
||||||
|
# 添加FastDeploy库依赖
|
||||||
|
target_link_libraries(yolov5face_demo ${FASTDEPLOY_LIBS})
|
60
model_zoo/vision/yolov5face/cpp/README.md
Normal file
60
model_zoo/vision/yolov5face/cpp/README.md
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
# 编译YOLOv5Face示例
|
||||||
|
|
||||||
|
当前支持模型版本为:[YOLOv5Face CommitID:4fd1ead](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead)
|
||||||
|
|
||||||
|
## 下载和解压预测库
|
||||||
|
```bash
|
||||||
|
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
|
||||||
|
tar xvf fastdeploy-linux-x64-0.0.3.tgz
|
||||||
|
```
|
||||||
|
|
||||||
|
## 编译示例代码
|
||||||
|
```bash
|
||||||
|
mkdir build & cd build
|
||||||
|
cmake ..
|
||||||
|
make -j
|
||||||
|
```
|
||||||
|
|
||||||
|
## 获取ONNX文件
|
||||||
|
|
||||||
|
访问[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)官方github库,按照指引下载安装,下载`yolov5s-face.pt` 模型,利用 `export.py` 得到`onnx`格式文件。
|
||||||
|
|
||||||
|
* 下载yolov5face模型文件
|
||||||
|
```
|
||||||
|
Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q
|
||||||
|
https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing
|
||||||
|
```
|
||||||
|
|
||||||
|
* 导出onnx格式文件
|
||||||
|
```bash
|
||||||
|
PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1
|
||||||
|
```
|
||||||
|
* onnx模型简化(可选)
|
||||||
|
```bash
|
||||||
|
onnxsim yolov5s-face.onnx yolov5s-face.onnx
|
||||||
|
```
|
||||||
|
* 移动onnx文件到可执行文件的目录
|
||||||
|
```bash
|
||||||
|
cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/cpp/build
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 准备测试图片
|
||||||
|
准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录
|
||||||
|
|
||||||
|
## 执行
|
||||||
|
```bash
|
||||||
|
./yolov5face_demo
|
||||||
|
```
|
||||||
|
|
||||||
|
执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示
|
||||||
|
```
|
||||||
|
aceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5]
|
||||||
|
749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470)
|
||||||
|
897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066)
|
||||||
|
281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048)
|
||||||
|
132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197)
|
||||||
|
699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794)
|
||||||
|
# ...
|
||||||
|
```
|
40
model_zoo/vision/yolov5face/cpp/yolov5face.cc
Normal file
40
model_zoo/vision/yolov5face/cpp/yolov5face.cc
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
namespace vis = fastdeploy::vision;
|
||||||
|
auto model = vis::deepcam::YOLOv5Face("yolov5s-face.onnx");
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Init Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
cv::Mat im = cv::imread("test.jpg");
|
||||||
|
cv::Mat vis_im = im.clone();
|
||||||
|
|
||||||
|
vis::FaceDetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res, 0.1f, 0.3f)) {
|
||||||
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 输出预测框结果
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
|
||||||
|
// 可视化预测结果
|
||||||
|
vis::Visualize::VisFaceDetection(&vis_im, res, 2, 0.3f);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
return 0;
|
||||||
|
}
|
17
model_zoo/vision/yolov5face/yolov5face.py
Normal file
17
model_zoo/vision/yolov5face/yolov5face.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# 加载模型
|
||||||
|
model = fd.vision.deepcam.YOLOv5Face("yolov5s-face.onnx")
|
||||||
|
|
||||||
|
# 预测图片
|
||||||
|
im = cv2.imread("test.jpg")
|
||||||
|
result = model.predict(im, conf_threshold=0.1, nms_iou_threshold=0.3)
|
||||||
|
|
||||||
|
# 可视化结果
|
||||||
|
fd.vision.visualize.vis_face_detection(im, result)
|
||||||
|
cv2.imwrite("vis_result.jpg", im)
|
||||||
|
|
||||||
|
# 输出预测结果
|
||||||
|
print(result)
|
||||||
|
print(model.runtime_option)
|
Reference in New Issue
Block a user