diff --git a/.gitignore b/.gitignore index 51f2f2ed8..967c01a0d 100644 --- a/.gitignore +++ b/.gitignore @@ -12,3 +12,5 @@ fastdeploy.egg-info fastdeploy/version.py fastdeploy/LICENSE* fastdeploy/ThirdPartyNotices* +*.so* +fastdeploy/libs/third_libs diff --git a/examples/vision/deepcam_yolov5face.cc b/examples/vision/deepcam_yolov5face.cc new file mode 100644 index 000000000..c6e0083e0 --- /dev/null +++ b/examples/vision/deepcam_yolov5face.cc @@ -0,0 +1,53 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision.h" + +int main() { + namespace vis = fastdeploy::vision; + + std::string model_file = "../resources/models/yolov5s-face.onnx"; + std::string img_path = "../resources/images/test_face_det.jpg"; + std::string vis_path = + "../resources/outputs/deepcam_yolov5face_vis_result.jpg"; + + auto model = vis::deepcam::YOLOv5Face(model_file); + if (!model.Initialized()) { + std::cerr << "Init Failed! Model: " << model_file << std::endl; + return -1; + } else { + std::cout << "Init Done! Model:" << model_file << std::endl; + } + model.EnableDebug(); + + cv::Mat im = cv::imread(img_path); + cv::Mat vis_im = im.clone(); + + vis::FaceDetectionResult res; + if (!model.Predict(&im, &res, 0.1f, 0.3f)) { + std::cerr << "Prediction Failed." << std::endl; + return -1; + } else { + std::cout << "Prediction Done!" << std::endl; + } + + // 输出预测框结果 + std::cout << res.Str() << std::endl; + + // 可视化预测结果 + vis::Visualize::VisFaceDetection(&vis_im, res, 2, 0.3f); + cv::imwrite(vis_path, vis_im); + std::cout << "Detect Done! Saved: " << vis_path << std::endl; + return 0; +} diff --git a/fastdeploy/__init__.py b/fastdeploy/__init__.py index 68006c1be..948f988b8 100644 --- a/fastdeploy/__init__.py +++ b/fastdeploy/__init__.py @@ -32,6 +32,8 @@ def RuntimeOptionStr(runtime_option): for attr in attrs: if attr.startswith("__"): continue + if hasattr(getattr(runtime_option, attr), "__call__"): + continue message += " {} : {}\t\n".format(attr, getattr(runtime_option, attr)) message.strip("\n") message += ")" diff --git a/fastdeploy/vision.h b/fastdeploy/vision.h index 1281df2af..a64e97477 100644 --- a/fastdeploy/vision.h +++ b/fastdeploy/vision.h @@ -15,16 +15,17 @@ #include "fastdeploy/core/config.h" #ifdef ENABLE_VISION +#include "fastdeploy/vision/deepcam/yolov5face.h" #include "fastdeploy/vision/megvii/yolox.h" #include "fastdeploy/vision/meituan/yolov6.h" #include "fastdeploy/vision/ppcls/model.h" #include "fastdeploy/vision/ppdet/ppyoloe.h" -#include "fastdeploy/vision/rangilyu/nanodet_plus.h" #include "fastdeploy/vision/ppseg/model.h" +#include "fastdeploy/vision/rangilyu/nanodet_plus.h" #include "fastdeploy/vision/ultralytics/yolov5.h" +#include "fastdeploy/vision/wongkinyiu/scaledyolov4.h" #include "fastdeploy/vision/wongkinyiu/yolor.h" #include "fastdeploy/vision/wongkinyiu/yolov7.h" -#include "fastdeploy/vision/wongkinyiu/scaledyolov4.h" #endif #include "fastdeploy/vision/visualize/visualize.h" diff --git a/fastdeploy/vision/__init__.py b/fastdeploy/vision/__init__.py index 09be1fa1b..f9c942370 100644 --- a/fastdeploy/vision/__init__.py +++ b/fastdeploy/vision/__init__.py @@ -22,4 +22,5 @@ from . import meituan from . import megvii from . import visualize from . import wongkinyiu +from . import deepcam from . import rangilyu diff --git a/fastdeploy/vision/common/result.cc b/fastdeploy/vision/common/result.cc index 06a85ea45..0ef077f0c 100644 --- a/fastdeploy/vision/common/result.cc +++ b/fastdeploy/vision/common/result.cc @@ -72,6 +72,73 @@ std::string DetectionResult::Str() { return out; } +FaceDetectionResult::FaceDetectionResult(const FaceDetectionResult& res) { + boxes.assign(res.boxes.begin(), res.boxes.end()); + landmarks.assign(res.landmarks.begin(), res.landmarks.end()); + scores.assign(res.scores.begin(), res.scores.end()); + landmarks_per_face = res.landmarks_per_face; +} + +void FaceDetectionResult::Clear() { + std::vector>().swap(boxes); + std::vector().swap(scores); + std::vector>().swap(landmarks); + landmarks_per_face = 0; +} + +void FaceDetectionResult::Reserve(int size) { + boxes.reserve(size); + scores.reserve(size); + if (landmarks_per_face > 0) { + landmarks.reserve(size * landmarks_per_face); + } +} + +void FaceDetectionResult::Resize(int size) { + boxes.resize(size); + scores.resize(size); + if (landmarks_per_face > 0) { + landmarks.resize(size * landmarks_per_face); + } +} + +std::string FaceDetectionResult::Str() { + std::string out; + // format without landmarks + if (landmarks_per_face <= 0) { + out = "FaceDetectionResult: [xmin, ymin, xmax, ymax, score]\n"; + for (size_t i = 0; i < boxes.size(); ++i) { + out = out + std::to_string(boxes[i][0]) + "," + + std::to_string(boxes[i][1]) + ", " + std::to_string(boxes[i][2]) + + ", " + std::to_string(boxes[i][3]) + ", " + + std::to_string(scores[i]) + "\n"; + } + return out; + } + // format with landmarks + FDASSERT((landmarks.size() == boxes.size() * landmarks_per_face), + "The size of landmarks != boxes.size * landmarks_per_face."); + out = "FaceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x " + + std::to_string(landmarks_per_face) + "]\n"; + for (size_t i = 0; i < boxes.size(); ++i) { + out = out + std::to_string(boxes[i][0]) + "," + + std::to_string(boxes[i][1]) + ", " + std::to_string(boxes[i][2]) + + ", " + std::to_string(boxes[i][3]) + ", " + + std::to_string(scores[i]) + ", "; + for (size_t j = 0; j < landmarks_per_face; ++j) { + out = out + "(" + + std::to_string(landmarks[i * landmarks_per_face + j][0]) + "," + + std::to_string(landmarks[i * landmarks_per_face + j][1]); + if (j < landmarks_per_face - 1) { + out = out + "), "; + } else { + out = out + ")\n"; + } + } + } + return out; +} + void SegmentationResult::Clear() { std::vector>().swap(masks); } diff --git a/fastdeploy/vision/common/result.h b/fastdeploy/vision/common/result.h index 7ff104250..4900d394d 100644 --- a/fastdeploy/vision/common/result.h +++ b/fastdeploy/vision/common/result.h @@ -21,7 +21,8 @@ enum FASTDEPLOY_DECL ResultType { UNKNOWN_RESULT, CLASSIFY, DETECTION, - SEGMENTATION + SEGMENTATION, + FACE_DETECTION }; struct FASTDEPLOY_DECL BaseResult { @@ -56,6 +57,31 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult { std::string Str(); }; +struct FASTDEPLOY_DECL FaceDetectionResult : public BaseResult { + // box: xmin, ymin, xmax, ymax + std::vector> boxes; + // landmark: x, y, landmarks may empty if the + // model don't detect face with landmarks. + // Note, one face might have multiple landmarks, + // such as 5/19/21/68/98/..., etc. + std::vector> landmarks; + std::vector scores; + ResultType type = ResultType::FACE_DETECTION; + // set landmarks_per_face manually in your post processes. + int landmarks_per_face; + + FaceDetectionResult() { landmarks_per_face = 0; } + FaceDetectionResult(const FaceDetectionResult& res); + + void Clear(); + + void Reserve(int size); + + void Resize(int size); + + std::string Str(); +}; + struct FASTDEPLOY_DECL SegmentationResult : public BaseResult { // mask std::vector> masks; diff --git a/fastdeploy/vision/deepcam/__init__.py b/fastdeploy/vision/deepcam/__init__.py new file mode 100644 index 000000000..6b1af4328 --- /dev/null +++ b/fastdeploy/vision/deepcam/__init__.py @@ -0,0 +1,117 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +import logging +from ... import FastDeployModel, Frontend +from ... import fastdeploy_main as C + + +class YOLOv5Face(FastDeployModel): + def __init__(self, + model_file, + params_file="", + runtime_option=None, + model_format=Frontend.ONNX): + # 调用基函数进行backend_option的初始化 + # 初始化后的option保存在self._runtime_option + super(YOLOv5Face, self).__init__(runtime_option) + + self._model = C.vision.deepcam.YOLOv5Face( + model_file, params_file, self._runtime_option, model_format) + # 通过self.initialized判断整个模型的初始化是否成功 + assert self.initialized, "YOLOv5Face initialize failed." + + def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5): + return self._model.predict(input_image, conf_threshold, + nms_iou_threshold) + + # 一些跟YOLOv5Face模型有关的属性封装 + # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持) + @property + def size(self): + return self._model.size + + @property + def padding_value(self): + return self._model.padding_value + + @property + def is_no_pad(self): + return self._model.is_no_pad + + @property + def is_mini_pad(self): + return self._model.is_mini_pad + + @property + def is_scale_up(self): + return self._model.is_scale_up + + @property + def stride(self): + return self._model.stride + + @property + def landmarks_per_face(self): + return self._model.landmarks_per_face + + @size.setter + def size(self, wh): + assert isinstance(wh, [list, tuple]),\ + "The value to set `size` must be type of tuple or list." + assert len(wh) == 2,\ + "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( + len(wh)) + self._model.size = wh + + @padding_value.setter + def padding_value(self, value): + assert isinstance( + value, + list), "The value to set `padding_value` must be type of list." + self._model.padding_value = value + + @is_no_pad.setter + def is_no_pad(self, value): + assert isinstance( + value, bool), "The value to set `is_no_pad` must be type of bool." + self._model.is_no_pad = value + + @is_mini_pad.setter + def is_mini_pad(self, value): + assert isinstance( + value, + bool), "The value to set `is_mini_pad` must be type of bool." + self._model.is_mini_pad = value + + @is_scale_up.setter + def is_scale_up(self, value): + assert isinstance( + value, + bool), "The value to set `is_scale_up` must be type of bool." + self._model.is_scale_up = value + + @stride.setter + def stride(self, value): + assert isinstance( + value, int), "The value to set `stride` must be type of int." + self._model.stride = value + + @landmarks_per_face.setter + def landmarks_per_face(self, value): + assert isinstance( + value, + int), "The value to set `landmarks_per_face` must be type of int." + self._model.landmarks_per_face = value diff --git a/fastdeploy/vision/deepcam/deepcam_pybind.cc b/fastdeploy/vision/deepcam/deepcam_pybind.cc new file mode 100644 index 000000000..3ac741bbc --- /dev/null +++ b/fastdeploy/vision/deepcam/deepcam_pybind.cc @@ -0,0 +1,43 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/pybind/main.h" + +namespace fastdeploy { +void BindDeepCam(pybind11::module& m) { + auto deepcam_module = + m.def_submodule("deepcam", "https://github.com/deepcam-cn/yolov5-face"); + pybind11::class_(deepcam_module, + "YOLOv5Face") + .def(pybind11::init()) + .def("predict", + [](vision::deepcam::YOLOv5Face& self, pybind11::array& data, + float conf_threshold, float nms_iou_threshold) { + auto mat = PyArrayToCvMat(data); + vision::FaceDetectionResult res; + self.Predict(&mat, &res, conf_threshold, nms_iou_threshold); + return res; + }) + .def_readwrite("size", &vision::deepcam::YOLOv5Face::size) + .def_readwrite("padding_value", + &vision::deepcam::YOLOv5Face::padding_value) + .def_readwrite("is_mini_pad", &vision::deepcam::YOLOv5Face::is_mini_pad) + .def_readwrite("is_no_pad", &vision::deepcam::YOLOv5Face::is_no_pad) + .def_readwrite("is_scale_up", &vision::deepcam::YOLOv5Face::is_scale_up) + .def_readwrite("stride", &vision::deepcam::YOLOv5Face::stride) + .def_readwrite("landmarks_per_face", + &vision::deepcam::YOLOv5Face::landmarks_per_face); +} + +} // namespace fastdeploy diff --git a/fastdeploy/vision/deepcam/yolov5face.cc b/fastdeploy/vision/deepcam/yolov5face.cc new file mode 100644 index 000000000..5b2c77af9 --- /dev/null +++ b/fastdeploy/vision/deepcam/yolov5face.cc @@ -0,0 +1,292 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision/deepcam/yolov5face.h" +#include "fastdeploy/utils/perf.h" +#include "fastdeploy/vision/utils/utils.h" + +namespace fastdeploy { + +namespace vision { + +namespace deepcam { + +void LetterBox(Mat* mat, std::vector size, std::vector color, + bool _auto, bool scale_fill = false, bool scale_up = true, + int stride = 32) { + float scale = + std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width()); + if (!scale_up) { + scale = std::min(scale, 1.0f); + } + + int resize_h = int(round(mat->Height() * scale)); + int resize_w = int(round(mat->Width() * scale)); + + int pad_w = size[0] - resize_w; + int pad_h = size[1] - resize_h; + if (_auto) { + pad_h = pad_h % stride; + pad_w = pad_w % stride; + } else if (scale_fill) { + pad_h = 0; + pad_w = 0; + resize_h = size[1]; + resize_w = size[0]; + } + if (resize_h != mat->Height() || resize_w != mat->Width()) { + Resize::Run(mat, resize_w, resize_h); + } + if (pad_h > 0 || pad_w > 0) { + float half_h = pad_h * 1.0 / 2; + int top = int(round(half_h - 0.1)); + int bottom = int(round(half_h + 0.1)); + float half_w = pad_w * 1.0 / 2; + int left = int(round(half_w - 0.1)); + int right = int(round(half_w + 0.1)); + Pad::Run(mat, top, bottom, left, right, color); + } +} + +YOLOv5Face::YOLOv5Face(const std::string& model_file, + const std::string& params_file, + const RuntimeOption& custom_option, + const Frontend& model_format) { + if (model_format == Frontend::ONNX) { + valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端 + valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端 + } else { + valid_cpu_backends = {Backend::PDINFER, Backend::ORT}; + valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; + } + runtime_option = custom_option; + runtime_option.model_format = model_format; + runtime_option.model_file = model_file; + runtime_option.params_file = params_file; + initialized = Initialize(); +} + +bool YOLOv5Face::Initialize() { + // parameters for preprocess + size = {640, 640}; + padding_value = {114.0, 114.0, 114.0}; + is_mini_pad = false; + is_no_pad = false; + is_scale_up = false; + stride = 32; + landmarks_per_face = 5; + + if (!InitRuntime()) { + FDERROR << "Failed to initialize fastdeploy backend." << std::endl; + return false; + } + // Check if the input shape is dynamic after Runtime already initialized, + // Note that, We need to force is_mini_pad 'false' to keep static + // shape after padding (LetterBox) when the is_dynamic_input_ is 'false'. + is_dynamic_input_ = false; + auto shape = InputInfoOfRuntime(0).shape; + for (int i = 0; i < shape.size(); ++i) { + // if height or width is dynamic + if (i >= 2 && shape[i] <= 0) { + is_dynamic_input_ = true; + break; + } + } + if (!is_dynamic_input_) { + is_mini_pad = false; + } + return true; +} + +bool YOLOv5Face::Preprocess( + Mat* mat, FDTensor* output, + std::map>* im_info) { + // process after image load + float ratio = std::min(size[1] * 1.0f / static_cast(mat->Height()), + size[0] * 1.0f / static_cast(mat->Width())); + if (ratio != 1.0) { // always true + int interp = cv::INTER_AREA; + if (ratio > 1.0) { + interp = cv::INTER_LINEAR; + } + int resize_h = int(round(static_cast(mat->Height()) * ratio)); + int resize_w = int(round(static_cast(mat->Width()) * ratio)); + Resize::Run(mat, resize_w, resize_h, -1, -1, interp); + } + // yolov5face's preprocess steps + // 1. letterbox + // 2. BGR->RGB + // 3. HWC->CHW + LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up, + stride); + BGR2RGB::Run(mat); + // Normalize::Run(mat, std::vector(mat->Channels(), 0.0), + // std::vector(mat->Channels(), 1.0)); + // Compute `result = mat * alpha + beta` directly by channel + std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; + std::vector beta = {0.0f, 0.0f, 0.0f}; + Convert::Run(mat, alpha, beta); + + // Record output shape of preprocessed image + (*im_info)["output_shape"] = {static_cast(mat->Height()), + static_cast(mat->Width())}; + + HWC2CHW::Run(mat); + Cast::Run(mat, "float"); + mat->ShareWithTensor(output); + output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c + return true; +} + +bool YOLOv5Face::Postprocess( + FDTensor& infer_result, FaceDetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold) { + // infer_result: (1,n,16) 16=4+1+10+1 + FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); + result->Clear(); + // must be setup landmarks_per_face before reserve + result->landmarks_per_face = landmarks_per_face; + result->Reserve(infer_result.shape[1]); + if (infer_result.dtype != FDDataType::FP32) { + FDERROR << "Only support post process with float32 data." << std::endl; + return false; + } + float* data = static_cast(infer_result.Data()); + for (size_t i = 0; i < infer_result.shape[1]; ++i) { + float* reg_cls_ptr = data + (i * infer_result.shape[2]); + float obj_conf = reg_cls_ptr[4]; + float cls_conf = reg_cls_ptr[15]; + float confidence = obj_conf * cls_conf; + // filter boxes by conf_threshold + if (confidence <= conf_threshold) { + continue; + } + float x = reg_cls_ptr[0]; + float y = reg_cls_ptr[1]; + float w = reg_cls_ptr[2]; + float h = reg_cls_ptr[3]; + + // convert from [x, y, w, h] to [x1, y1, x2, y2] + result->boxes.emplace_back(std::array{ + (x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)}); + result->scores.push_back(confidence); + // decode landmarks (default 5 landmarks) + if (landmarks_per_face > 0) { + float* landmarks_ptr = reg_cls_ptr + 5; + for (size_t j = 0; j < landmarks_per_face * 2; j += 2) { + result->landmarks.emplace_back( + std::array{landmarks_ptr[j], landmarks_ptr[j + 1]}); + } + } + } + + if (result->boxes.size() == 0) { + return true; + } + + utils::NMS(result, nms_iou_threshold); + + // scale the boxes to the origin image shape + auto iter_out = im_info.find("output_shape"); + auto iter_ipt = im_info.find("input_shape"); + FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), + "Cannot find input_shape or output_shape from im_info."); + float out_h = iter_out->second[0]; + float out_w = iter_out->second[1]; + float ipt_h = iter_ipt->second[0]; + float ipt_w = iter_ipt->second[1]; + float scale = std::min(out_h / ipt_h, out_w / ipt_w); + float pad_h = (out_h - ipt_h * scale) / 2.f; + float pad_w = (out_w - ipt_w * scale) / 2.f; + if (is_mini_pad) { + pad_h = static_cast(static_cast(pad_h) % stride); + pad_w = static_cast(static_cast(pad_w) % stride); + } + // scale and clip box + for (size_t i = 0; i < result->boxes.size(); ++i) { + result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f); + result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f); + result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f); + result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f); + result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); + result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); + result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); + result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); + } + // scale and clip landmarks + for (size_t i = 0; i < result->landmarks.size(); ++i) { + result->landmarks[i][0] = + std::max((result->landmarks[i][0] - pad_w) / scale, 0.0f); + result->landmarks[i][1] = + std::max((result->landmarks[i][1] - pad_h) / scale, 0.0f); + result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f); + result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f); + } + return true; +} + +bool YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result, + float conf_threshold, float nms_iou_threshold) { +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_START(0) +#endif + + Mat mat(*im); + std::vector input_tensors(1); + + std::map> im_info; + + // Record the shape of image and the shape of preprocessed image + im_info["input_shape"] = {static_cast(mat.Height()), + static_cast(mat.Width())}; + im_info["output_shape"] = {static_cast(mat.Height()), + static_cast(mat.Width())}; + + if (!Preprocess(&mat, &input_tensors[0], &im_info)) { + FDERROR << "Failed to preprocess input image." << std::endl; + return false; + } + +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(0, "Preprocess") + TIMERECORD_START(1) +#endif + + input_tensors[0].name = InputInfoOfRuntime(0).name; + std::vector output_tensors; + if (!Infer(input_tensors, &output_tensors)) { + FDERROR << "Failed to inference." << std::endl; + return false; + } +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(1, "Inference") + TIMERECORD_START(2) +#endif + + if (!Postprocess(output_tensors[0], result, im_info, conf_threshold, + nms_iou_threshold)) { + FDERROR << "Failed to post process." << std::endl; + return false; + } + +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(2, "Postprocess") +#endif + return true; +} + +} // namespace deepcam +} // namespace vision +} // namespace fastdeploy \ No newline at end of file diff --git a/fastdeploy/vision/deepcam/yolov5face.h b/fastdeploy/vision/deepcam/yolov5face.h new file mode 100644 index 000000000..74a6f9c69 --- /dev/null +++ b/fastdeploy/vision/deepcam/yolov5face.h @@ -0,0 +1,97 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "fastdeploy/fastdeploy_model.h" +#include "fastdeploy/vision/common/processors/transform.h" +#include "fastdeploy/vision/common/result.h" + +namespace fastdeploy { + +namespace vision { + +namespace deepcam { + +class FASTDEPLOY_DECL YOLOv5Face : public FastDeployModel { + public: + // 当model_format为ONNX时,无需指定params_file + // 当model_format为Paddle时,则需同时指定model_file & params_file + YOLOv5Face(const std::string& model_file, const std::string& params_file = "", + const RuntimeOption& custom_option = RuntimeOption(), + const Frontend& model_format = Frontend::ONNX); + + // 定义模型的名称 + std::string ModelName() const { return "deepcam-cn/yolov5-face"; } + + // 模型预测接口,即用户调用的接口 + // im 为用户的输入数据,目前对于CV均定义为cv::Mat + // result 为模型预测的输出结构体 + // conf_threshold 为后处理的参数 + // nms_iou_threshold 为后处理的参数 + virtual bool Predict(cv::Mat* im, FaceDetectionResult* result, + float conf_threshold = 0.25, + float nms_iou_threshold = 0.5); + + // 以下为模型在预测时的一些参数,基本是前后处理所需 + // 用户在创建模型后,可根据模型的要求,以及自己的需求 + // 对参数进行修改 + // tuple of (width, height) + std::vector size; + // padding value, size should be same with Channels + std::vector padding_value; + // only pad to the minimum rectange which height and width is times of stride + bool is_mini_pad; + // while is_mini_pad = false and is_no_pad = true, will resize the image to + // the set size + bool is_no_pad; + // if is_scale_up is false, the input image only can be zoom out, the maximum + // resize scale cannot exceed 1.0 + bool is_scale_up; + // padding stride, for is_mini_pad + int stride; + // setup the number of landmarks for per face (if have), default 5 in + // official yolov5face note that, the outupt tensor's shape must be: + // (1,n,4+1+2*landmarks_per_face+1=box+obj+landmarks+cls) + int landmarks_per_face; + + private: + // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 + bool Initialize(); + + // 输入图像预处理操作 + // Mat为FastDeploy定义的数据结构 + // FDTensor为预处理后的Tensor数据,传给后端进行推理 + // im_info为预处理过程保存的数据,在后处理中需要用到 + bool Preprocess(Mat* mat, FDTensor* outputs, + std::map>* im_info); + + // 后端推理结果后处理,输出给用户 + // infer_result 为后端推理后的输出Tensor + // result 为模型预测的结果 + // im_info 为预处理记录的信息,后处理用于还原box + // conf_threshold 后处理时过滤box的置信度阈值 + // nms_iou_threshold 后处理时NMS设定的iou阈值 + bool Postprocess(FDTensor& infer_result, FaceDetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold); + + // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致 + bool IsDynamicInput() const { return is_dynamic_input_; } + + bool is_dynamic_input_; +}; + +} // namespace deepcam +} // namespace vision +} // namespace fastdeploy diff --git a/fastdeploy/vision/utils/nms.cc b/fastdeploy/vision/utils/nms.cc index d0cd1d59e..900acf84d 100644 --- a/fastdeploy/vision/utils/nms.cc +++ b/fastdeploy/vision/utils/nms.cc @@ -66,6 +66,62 @@ void NMS(DetectionResult* result, float iou_threshold) { } } +void NMS(FaceDetectionResult* result, float iou_threshold) { + utils::SortDetectionResult(result); + + std::vector area_of_boxes(result->boxes.size()); + std::vector suppressed(result->boxes.size(), 0); + for (size_t i = 0; i < result->boxes.size(); ++i) { + area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0]) * + (result->boxes[i][3] - result->boxes[i][1]); + } + + for (size_t i = 0; i < result->boxes.size(); ++i) { + if (suppressed[i] == 1) { + continue; + } + for (size_t j = i + 1; j < result->boxes.size(); ++j) { + if (suppressed[j] == 1) { + continue; + } + float xmin = std::max(result->boxes[i][0], result->boxes[j][0]); + float ymin = std::max(result->boxes[i][1], result->boxes[j][1]); + float xmax = std::min(result->boxes[i][2], result->boxes[j][2]); + float ymax = std::min(result->boxes[i][3], result->boxes[j][3]); + float overlap_w = std::max(0.0f, xmax - xmin); + float overlap_h = std::max(0.0f, ymax - ymin); + float overlap_area = overlap_w * overlap_h; + float overlap_ratio = + overlap_area / (area_of_boxes[i] + area_of_boxes[j] - overlap_area); + if (overlap_ratio > iou_threshold) { + suppressed[j] = 1; + } + } + } + FaceDetectionResult backup(*result); + int landmarks_per_face = result->landmarks_per_face; + + result->Clear(); + // don't forget to reset the landmarks_per_face + // before apply Reserve method. + result->landmarks_per_face = landmarks_per_face; + result->Reserve(suppressed.size()); + for (size_t i = 0; i < suppressed.size(); ++i) { + if (suppressed[i] == 1) { + continue; + } + result->boxes.emplace_back(backup.boxes[i]); + result->scores.push_back(backup.scores[i]); + // landmarks (if have) + if (result->landmarks_per_face > 0) { + for (size_t j = 0; j < result->landmarks_per_face; ++j) { + result->landmarks.emplace_back( + backup.landmarks[i * result->landmarks_per_face + j]); + } + } + } +} + } // namespace utils } // namespace vision } // namespace fastdeploy diff --git a/fastdeploy/vision/utils/sort_face_det_res.cc b/fastdeploy/vision/utils/sort_face_det_res.cc new file mode 100644 index 000000000..34150f9ac --- /dev/null +++ b/fastdeploy/vision/utils/sort_face_det_res.cc @@ -0,0 +1,69 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision/utils/utils.h" + +namespace fastdeploy { +namespace vision { +namespace utils { + +void SortDetectionResult(FaceDetectionResult* result) { + // sort face detection results with landmarks or not. + if (result->boxes.size() == 0) { + return; + } + int landmarks_per_face = result->landmarks_per_face; + if (landmarks_per_face > 0) { + FDASSERT( + (result->landmarks.size() == result->boxes.size() * landmarks_per_face), + "The size of landmarks != boxes.size * landmarks_per_face."); + } + + // argsort for scores. + std::vector indices; + indices.resize(result->boxes.size()); + for (size_t i = 0; i < result->boxes.size(); ++i) { + indices[i] = i; + } + std::vector& scores = result->scores; + std::sort(indices.begin(), indices.end(), + [&scores](size_t a, size_t b) { return scores[a] > scores[b]; }); + + // reorder boxes, scores, landmarks (if have). + FaceDetectionResult backup(*result); + result->Clear(); + // don't forget to reset the landmarks_per_face + // before apply Reserve method. + result->landmarks_per_face = landmarks_per_face; + result->Reserve(indices.size()); + if (landmarks_per_face > 0) { + for (size_t i = 0; i < indices.size(); ++i) { + result->boxes.emplace_back(backup.boxes[indices[i]]); + result->scores.push_back(backup.scores[indices[i]]); + for (size_t j = 0; j < landmarks_per_face; ++j) { + result->landmarks.emplace_back( + backup.landmarks[indices[i] * landmarks_per_face + j]); + } + } + } else { + for (size_t i = 0; i < indices.size(); ++i) { + result->boxes.emplace_back(backup.boxes[indices[i]]); + result->scores.push_back(backup.scores[indices[i]]); + } + } +} + +} // namespace utils +} // namespace vision +} // namespace fastdeploy diff --git a/fastdeploy/vision/utils/utils.h b/fastdeploy/vision/utils/utils.h index 79ece458c..e95e7e10b 100644 --- a/fastdeploy/vision/utils/utils.h +++ b/fastdeploy/vision/utils/utils.h @@ -53,9 +53,13 @@ std::vector TopKIndices(const T* array, int array_size, int topk) { void NMS(DetectionResult* output, float iou_threshold = 0.5); +void NMS(FaceDetectionResult* result, float iou_threshold = 0.5); + // MergeSort void SortDetectionResult(DetectionResult* output); +void SortDetectionResult(FaceDetectionResult* result); + } // namespace utils } // namespace vision } // namespace fastdeploy diff --git a/fastdeploy/vision/vision_pybind.cc b/fastdeploy/vision/vision_pybind.cc index 42fcebff4..3b426ebd8 100644 --- a/fastdeploy/vision/vision_pybind.cc +++ b/fastdeploy/vision/vision_pybind.cc @@ -23,6 +23,7 @@ void BindPPSeg(pybind11::module& m); void BindUltralytics(pybind11::module& m); void BindMeituan(pybind11::module& m); void BindMegvii(pybind11::module& m); +void BindDeepCam(pybind11::module& m); void BindRangiLyu(pybind11::module& m); #ifdef ENABLE_VISION_VISUALIZE void BindVisualize(pybind11::module& m); @@ -44,6 +45,15 @@ void BindVision(pybind11::module& m) { .def("__repr__", &vision::DetectionResult::Str) .def("__str__", &vision::DetectionResult::Str); + pybind11::class_(m, "FaceDetectionResult") + .def(pybind11::init()) + .def_readwrite("boxes", &vision::FaceDetectionResult::boxes) + .def_readwrite("scores", &vision::FaceDetectionResult::scores) + .def_readwrite("landmarks", &vision::FaceDetectionResult::landmarks) + .def_readwrite("landmarks_per_face", + &vision::FaceDetectionResult::landmarks_per_face) + .def("__repr__", &vision::FaceDetectionResult::Str) + .def("__str__", &vision::FaceDetectionResult::Str); pybind11::class_(m, "SegmentationResult") .def(pybind11::init()) .def_readwrite("masks", &vision::SegmentationResult::masks) @@ -57,6 +67,7 @@ void BindVision(pybind11::module& m) { BindWongkinyiu(m); BindMeituan(m); BindMegvii(m); + BindDeepCam(m); BindRangiLyu(m); #ifdef ENABLE_VISION_VISUALIZE BindVisualize(m); diff --git a/fastdeploy/vision/visualize/__init__.py b/fastdeploy/vision/visualize/__init__.py index 7d1bcc892..ea836b68e 100644 --- a/fastdeploy/vision/visualize/__init__.py +++ b/fastdeploy/vision/visualize/__init__.py @@ -21,6 +21,11 @@ def vis_detection(im_data, det_result, line_size=1, font_size=0.5): C.vision.Visualize.vis_detection(im_data, det_result, line_size, font_size) +def vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5): + C.vision.Visualize.vis_face_detection(im_data, face_det_result, line_size, + font_size) + + def vis_segmentation(im_data, seg_result, vis_im_data, num_classes=1000): C.vision.Visualize.vis_segmentation(im_data, seg_result, vis_im_data, num_classes) diff --git a/fastdeploy/vision/visualize/face_detection.cc b/fastdeploy/vision/visualize/face_detection.cc new file mode 100644 index 000000000..8a95a1ad7 --- /dev/null +++ b/fastdeploy/vision/visualize/face_detection.cc @@ -0,0 +1,81 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifdef ENABLE_VISION_VISUALIZE + +#include "fastdeploy/vision/visualize/visualize.h" +#include "opencv2/imgproc/imgproc.hpp" + +namespace fastdeploy { + +namespace vision { + +// Default only support visualize num_classes <= 1000 +// If need to visualize num_classes > 1000 +// Please call Visualize::GetColorMap(num_classes) first +void Visualize::VisFaceDetection(cv::Mat* im, const FaceDetectionResult& result, + int line_size, float font_size) { + auto color_map = GetColorMap(); + int h = im->rows; + int w = im->cols; + + bool vis_landmarks = false; + if ((result.landmarks_per_face > 0) && + (result.boxes.size() * result.landmarks_per_face == + result.landmarks.size())) { + vis_landmarks = true; + } + for (size_t i = 0; i < result.boxes.size(); ++i) { + cv::Rect rect(result.boxes[i][0], result.boxes[i][1], + result.boxes[i][2] - result.boxes[i][0], + result.boxes[i][3] - result.boxes[i][1]); + int color_id = i % 333; + int c0 = color_map[3 * color_id + 0]; + int c1 = color_map[3 * color_id + 1]; + int c2 = color_map[3 * color_id + 2]; + cv::Scalar rect_color = cv::Scalar(c0, c1, c2); + std::string text = std::to_string(result.scores[i]); + if (text.size() > 4) { + text = text.substr(0, 4); + } + int font = cv::FONT_HERSHEY_SIMPLEX; + cv::Size text_size = cv::getTextSize(text, font, font_size, 1, nullptr); + cv::Point origin; + origin.x = rect.x; + origin.y = rect.y; + cv::Rect text_background = + cv::Rect(result.boxes[i][0], result.boxes[i][1] - text_size.height, + text_size.width, text_size.height); + cv::rectangle(*im, rect, rect_color, line_size); + cv::putText(*im, text, origin, font, font_size, cv::Scalar(255, 255, 255), + 1); + // vis landmarks (if have) + if (vis_landmarks) { + cv::Scalar landmark_color = rect_color; + for (size_t j = 0; j < result.landmarks_per_face; ++j) { + cv::Point landmark; + landmark.x = static_cast( + result.landmarks[i * result.landmarks_per_face + j][0]); + landmark.y = static_cast( + result.landmarks[i * result.landmarks_per_face + j][1]); + cv::circle(*im, landmark, line_size, landmark_color, -1); + } + } + } +} + +} // namespace vision +} // namespace fastdeploy + +#endif \ No newline at end of file diff --git a/fastdeploy/vision/visualize/visualize.h b/fastdeploy/vision/visualize/visualize.h index 1eb212c2b..f0fab5ee9 100644 --- a/fastdeploy/vision/visualize/visualize.h +++ b/fastdeploy/vision/visualize/visualize.h @@ -27,6 +27,8 @@ class FASTDEPLOY_DECL Visualize { static const std::vector& GetColorMap(int num_classes = 1000); static void VisDetection(cv::Mat* im, const DetectionResult& result, int line_size = 2, float font_size = 0.5f); + static void VisFaceDetection(cv::Mat* im, const FaceDetectionResult& result, + int line_size = 2, float font_size = 0.5f); static void VisSegmentation(const cv::Mat& im, const SegmentationResult& result, cv::Mat* vis_img, const int& num_classes = 1000); diff --git a/fastdeploy/vision/visualize/visualize_pybind.cc b/fastdeploy/vision/visualize/visualize_pybind.cc index 5d5eb2388..4e12f55c8 100644 --- a/fastdeploy/vision/visualize/visualize_pybind.cc +++ b/fastdeploy/vision/visualize/visualize_pybind.cc @@ -25,6 +25,14 @@ void BindVisualize(pybind11::module& m) { vision::Visualize::VisDetection(&im, result, line_size, font_size); }) + .def_static( + "vis_face_detection", + [](pybind11::array& im_data, vision::FaceDetectionResult& result, + int line_size, float font_size) { + auto im = PyArrayToCvMat(im_data); + vision::Visualize::VisFaceDetection(&im, result, line_size, + font_size); + }) .def_static("vis_segmentation", [](pybind11::array& im_data, vision::SegmentationResult& result, pybind11::array& vis_im_data, diff --git a/fastdeploy/vision/wongkinyiu/scaledyolov4.cc b/fastdeploy/vision/wongkinyiu/scaledyolov4.cc index 240e3b7ba..7321fc01b 100644 --- a/fastdeploy/vision/wongkinyiu/scaledyolov4.cc +++ b/fastdeploy/vision/wongkinyiu/scaledyolov4.cc @@ -21,8 +21,8 @@ namespace vision { namespace wongkinyiu { void ScaledYOLOv4::LetterBox(Mat* mat, const std::vector& size, - const std::vector& color, bool _auto, - bool scale_fill, bool scale_up, int stride) { + const std::vector& color, bool _auto, + bool scale_fill, bool scale_up, int stride) { float scale = std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width()); if (!scale_up) { @@ -57,8 +57,10 @@ void ScaledYOLOv4::LetterBox(Mat* mat, const std::vector& size, } } -ScaledYOLOv4::ScaledYOLOv4(const std::string& model_file, const std::string& params_file, - const RuntimeOption& custom_option, const Frontend& model_format) { +ScaledYOLOv4::ScaledYOLOv4(const std::string& model_file, + const std::string& params_file, + const RuntimeOption& custom_option, + const Frontend& model_format) { if (model_format == Frontend::ONNX) { valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端 valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端 @@ -90,8 +92,9 @@ bool ScaledYOLOv4::Initialize() { return true; } -bool ScaledYOLOv4::Preprocess(Mat* mat, FDTensor* output, - std::map>* im_info) { +bool ScaledYOLOv4::Preprocess( + Mat* mat, FDTensor* output, + std::map>* im_info) { // process after image load float ratio = std::min(size[1] * 1.0f / static_cast(mat->Height()), size[0] * 1.0f / static_cast(mat->Width())); @@ -109,7 +112,7 @@ bool ScaledYOLOv4::Preprocess(Mat* mat, FDTensor* output, // 2. BGR->RGB // 3. HWC->CHW ScaledYOLOv4::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, - is_scale_up, stride); + is_scale_up, stride); BGR2RGB::Run(mat); // Normalize::Run(mat, std::vector(mat->Channels(), 0.0), // std::vector(mat->Channels(), 1.0)); @@ -176,7 +179,7 @@ bool ScaledYOLOv4::Postprocess( float pad_h = (out_h - ipt_h * scale) / 2.0f; float pad_w = (out_w - ipt_w * scale) / 2.0f; if (is_mini_pad) { - // 和 LetterBox中_auto=true的处理逻辑对应 + // 和 LetterBox中_auto=true的处理逻辑对应 pad_h = static_cast(static_cast(pad_h) % stride); pad_w = static_cast(static_cast(pad_w) % stride); } @@ -199,8 +202,8 @@ bool ScaledYOLOv4::Postprocess( return true; } -bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, - float nms_iou_threshold) { +bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result, + float conf_threshold, float nms_iou_threshold) { #ifdef FASTDEPLOY_DEBUG TIMERECORD_START(0) #endif diff --git a/fastdeploy/vision/wongkinyiu/scaledyolov4.h b/fastdeploy/vision/wongkinyiu/scaledyolov4.h index c85fc8a04..788b57474 100644 --- a/fastdeploy/vision/wongkinyiu/scaledyolov4.h +++ b/fastdeploy/vision/wongkinyiu/scaledyolov4.h @@ -25,9 +25,10 @@ class FASTDEPLOY_DECL ScaledYOLOv4 : public FastDeployModel { public: // 当model_format为ONNX时,无需指定params_file // 当model_format为Paddle时,则需同时指定model_file & params_file - ScaledYOLOv4(const std::string& model_file, const std::string& params_file = "", - const RuntimeOption& custom_option = RuntimeOption(), - const Frontend& model_format = Frontend::ONNX); + ScaledYOLOv4(const std::string& model_file, + const std::string& params_file = "", + const RuntimeOption& custom_option = RuntimeOption(), + const Frontend& model_format = Frontend::ONNX); // 定义模型的名称 virtual std::string ModelName() const { return "WongKinYiu/ScaledYOLOv4"; } diff --git a/model_zoo/vision/yolov5face/README.md b/model_zoo/vision/yolov5face/README.md new file mode 100644 index 000000000..e1713e67d --- /dev/null +++ b/model_zoo/vision/yolov5face/README.md @@ -0,0 +1,78 @@ +# YOLOv5Face部署示例 + +当前支持模型版本为:[YOLOv5Face CommitID:4fd1ead](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead) + +本文档说明如何进行[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)的快速部署推理。本目录结构如下 + +``` +. +├── cpp # C++ 代码目录 +│   ├── CMakeLists.txt # C++ 代码编译CMakeLists文件 +│   ├── README.md # C++ 代码编译部署文档 +│   └── yolov5face.cc # C++ 示例代码 +├── api.md # API 说明文档 +├── README.md # YOLOv5Face 部署文档 +└── yolov5face.py # Python示例代码 +``` + +## 获取ONNX文件 + +访问[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)官方github库,按照指引下载安装,下载`yolov5s-face.pt` 模型,利用 `export.py` 得到`onnx`格式文件。 + +* 下载yolov5face模型文件 + ``` + Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q + https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing + ``` + +* 导出onnx格式文件 + ```bash + PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1 + ``` +* onnx模型简化(可选) + ```bash + onnxsim yolov5s-face.onnx yolov5s-face.onnx + ``` +* 移动onnx文件到model_zoo/yolov5face的目录 + ```bash + cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/ + ``` + + + +## 准备测试图片 +准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录 + +## 安装FastDeploy + +使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu` +```bash +# 安装fastdeploy-python工具 +pip install fastdeploy-python + +# 安装vision-cpu模块 +fastdeploy install vision-cpu +``` + +## Python部署 + +执行如下代码即会自动下载YOLOv5Face模型和测试图片 +```bash +python yolov5face.py +``` + +执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下 +``` +FaceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5] +749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470) +897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066) +281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048) +132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197) +699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794) +# ... +``` + +## 其它文档 + +- [C++部署](./cpp/README.md) +- [YOLOv5Face API文档](./api.md) diff --git a/model_zoo/vision/yolov5face/api.md b/model_zoo/vision/yolov5face/api.md new file mode 100644 index 000000000..384ef23d3 --- /dev/null +++ b/model_zoo/vision/yolov5face/api.md @@ -0,0 +1,71 @@ +# YOLOv5Face API说明 + +## Python API + +### YOLOv5Face类 +``` +fastdeploy.vision.deepcam.YOLOv5Face(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX) +``` +YOLOv5Face模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`yolov5s-face.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。 + +**参数** + +> * **model_file**(str): 模型文件路径 +> * **params_file**(str): 参数文件路径 +> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 +> * **model_format**(Frontend): 模型格式 + +#### predict函数 +> ``` +> YOLOv5Face.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) +> ``` +> 模型预测结口,输入图像直接输出检测结果。 +> +> **参数** +> +> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式 +> > * **conf_threshold**(float): 检测框置信度过滤阈值 +> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值 + +示例代码参考[yolov5face.py](./yolov5face.py) + + +## C++ API + +### YOLOv5Face类 +``` +fastdeploy::vision::deepcam::YOLOv5Face( + const string& model_file, + const string& params_file = "", + const RuntimeOption& runtime_option = RuntimeOption(), + const Frontend& model_format = Frontend::ONNX) +``` +YOLOv5Face模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`yolov5s-face.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。 + +**参数** + +> * **model_file**(str): 模型文件路径 +> * **params_file**(str): 参数文件路径 +> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 +> * **model_format**(Frontend): 模型格式 + +#### Predict函数 +> ``` +> YOLOv5Face::Predict(cv::Mat* im, DetectionResult* result, +> float conf_threshold = 0.25, +> float nms_iou_threshold = 0.5) +> ``` +> 模型预测接口,输入图像直接输出检测结果。 +> +> **参数** +> +> > * **im**: 输入图像,注意需为HWC,BGR格式 +> > * **result**: 检测结果,包括检测框,各个框的置信度 +> > * **conf_threshold**: 检测框置信度过滤阈值 +> > * **nms_iou_threshold**: NMS处理过程中iou阈值 + +示例代码参考[cpp/yolov5face.cc](cpp/yolov5face.cc) + +## 其它API使用 + +- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md) diff --git a/model_zoo/vision/yolov5face/cpp/CMakeLists.txt b/model_zoo/vision/yolov5face/cpp/CMakeLists.txt new file mode 100644 index 000000000..23878ac2c --- /dev/null +++ b/model_zoo/vision/yolov5face/cpp/CMakeLists.txt @@ -0,0 +1,17 @@ +PROJECT(yolov5face_demo C CXX) +CMAKE_MINIMUM_REQUIRED (VERSION 3.16) + +# 在低版本ABI环境中,通过如下代码进行兼容性编译 +# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) + +# 指定下载解压后的fastdeploy库路径 +set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.3.0/) + +include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) + +# 添加FastDeploy依赖头文件 +include_directories(${FASTDEPLOY_INCS}) + +add_executable(yolov5face_demo ${PROJECT_SOURCE_DIR}/yolov5face.cc) +# 添加FastDeploy库依赖 +target_link_libraries(yolov5face_demo ${FASTDEPLOY_LIBS}) diff --git a/model_zoo/vision/yolov5face/cpp/README.md b/model_zoo/vision/yolov5face/cpp/README.md new file mode 100644 index 000000000..4f5788458 --- /dev/null +++ b/model_zoo/vision/yolov5face/cpp/README.md @@ -0,0 +1,60 @@ +# 编译YOLOv5Face示例 + +当前支持模型版本为:[YOLOv5Face CommitID:4fd1ead](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead) + +## 下载和解压预测库 +```bash +wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz +tar xvf fastdeploy-linux-x64-0.0.3.tgz +``` + +## 编译示例代码 +```bash +mkdir build & cd build +cmake .. +make -j +``` + +## 获取ONNX文件 + +访问[YOLOv5Face](https://github.com/deepcam-cn/yolov5-face)官方github库,按照指引下载安装,下载`yolov5s-face.pt` 模型,利用 `export.py` 得到`onnx`格式文件。 + +* 下载yolov5face模型文件 + ``` + Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q + https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing + ``` + +* 导出onnx格式文件 + ```bash + PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1 + ``` +* onnx模型简化(可选) + ```bash + onnxsim yolov5s-face.onnx yolov5s-face.onnx + ``` +* 移动onnx文件到可执行文件的目录 + ```bash + cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/cpp/build + ``` + + + +## 准备测试图片 +准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录 + +## 执行 +```bash +./yolov5face_demo +``` + +执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示 +``` +aceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5] +749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470) +897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066) +281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048) +132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197) +699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794) +# ... +``` diff --git a/model_zoo/vision/yolov5face/cpp/yolov5face.cc b/model_zoo/vision/yolov5face/cpp/yolov5face.cc new file mode 100644 index 000000000..baa0bb7c0 --- /dev/null +++ b/model_zoo/vision/yolov5face/cpp/yolov5face.cc @@ -0,0 +1,40 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision.h" + +int main() { + namespace vis = fastdeploy::vision; + auto model = vis::deepcam::YOLOv5Face("yolov5s-face.onnx"); + if (!model.Initialized()) { + std::cerr << "Init Failed." << std::endl; + return -1; + } + cv::Mat im = cv::imread("test.jpg"); + cv::Mat vis_im = im.clone(); + + vis::FaceDetectionResult res; + if (!model.Predict(&im, &res, 0.1f, 0.3f)) { + std::cerr << "Prediction Failed." << std::endl; + return -1; + } + + // 输出预测框结果 + std::cout << res.Str() << std::endl; + + // 可视化预测结果 + vis::Visualize::VisFaceDetection(&vis_im, res, 2, 0.3f); + cv::imwrite("vis_result.jpg", vis_im); + return 0; +} diff --git a/model_zoo/vision/yolov5face/yolov5face.py b/model_zoo/vision/yolov5face/yolov5face.py new file mode 100644 index 000000000..ff7ab1b77 --- /dev/null +++ b/model_zoo/vision/yolov5face/yolov5face.py @@ -0,0 +1,17 @@ +import fastdeploy as fd +import cv2 + +# 加载模型 +model = fd.vision.deepcam.YOLOv5Face("yolov5s-face.onnx") + +# 预测图片 +im = cv2.imread("test.jpg") +result = model.predict(im, conf_threshold=0.1, nms_iou_threshold=0.3) + +# 可视化结果 +fd.vision.visualize.vis_face_detection(im, result) +cv2.imwrite("vis_result.jpg", im) + +# 输出预测结果 +print(result) +print(model.runtime_option)