mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
[Other] Improve some PPOCR API comments. (#875)
* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link * Improve PPOCR comments
This commit is contained in:
@@ -43,11 +43,21 @@ class FASTDEPLOY_DECL Classifier : public FastDeployModel {
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE);
|
||||
/// Get model's name
|
||||
std::string ModelName() const { return "ppocr/ocr_cls"; }
|
||||
virtual bool Predict(const cv::Mat& img, int32_t* cls_label, float* cls_score);
|
||||
|
||||
/** \brief Predict the input image and get OCR classification model cls_result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] cls_label The label result of cls model will be written in to this param.
|
||||
* \param[in] cls_score The score result of cls model will be written in to this param.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img,
|
||||
int32_t* cls_label, float* cls_score);
|
||||
/** \brief BatchPredict the input image and get OCR classification model cls_result.
|
||||
*
|
||||
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] cls_results The output of OCR classification model cls_result will be writen to this structure.
|
||||
* \param[in] cls_labels The label results of cls model will be written in to this vector.
|
||||
* \param[in] cls_scores The score results of cls model will be written in to this vector.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
|
@@ -28,8 +28,8 @@ class FASTDEPLOY_DECL ClassifierPostprocessor {
|
||||
/** \brief Process the result of runtime and fill to ClassifyResult structure
|
||||
*
|
||||
* \param[in] tensors The inference result from runtime
|
||||
* \param[in] cls_labels The output result of classification
|
||||
* \param[in] cls_scores The output result of classification
|
||||
* \param[in] cls_labels The output label results of classification model
|
||||
* \param[in] cls_scores The output score results of classification model
|
||||
* \return true if the postprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(const std::vector<FDTensor>& tensors,
|
||||
|
@@ -26,8 +26,8 @@ class FASTDEPLOY_DECL ClassifierPreprocessor {
|
||||
public:
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \param[in] images The input data list, all the elements are FDMat
|
||||
* \param[in] outputs The output tensors which will be fed into runtime
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
||||
|
@@ -26,7 +26,7 @@ class FASTDEPLOY_DECL DBDetectorPreprocessor {
|
||||
public:
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] images The input data list, all the elements are FDMat
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \param[in] batch_det_img_info_ptr The output of preprocess
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
|
@@ -35,8 +35,8 @@ class FASTDEPLOY_DECL RecognizerPostprocessor {
|
||||
/** \brief Process the result of runtime and fill to RecognizerResult
|
||||
*
|
||||
* \param[in] tensors The inference result from runtime
|
||||
* \param[in] texts The output result of recognizer
|
||||
* \param[in] rec_scores The output result of recognizer
|
||||
* \param[in] texts The output text results of recognizer
|
||||
* \param[in] rec_scores The output score results of recognizer
|
||||
* \return true if the postprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(const std::vector<FDTensor>& tensors,
|
||||
|
@@ -26,8 +26,8 @@ class FASTDEPLOY_DECL RecognizerPreprocessor {
|
||||
public:
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \param[in] images The input data list, all the elements are FDMat
|
||||
* \param[in] outputs The output tensors which will be fed into runtime
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
||||
|
@@ -45,11 +45,19 @@ class FASTDEPLOY_DECL Recognizer : public FastDeployModel {
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE);
|
||||
/// Get model's name
|
||||
std::string ModelName() const { return "ppocr/ocr_rec"; }
|
||||
/** \brief Predict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] text The text result of rec model will be written into this parameter.
|
||||
* \param[in] rec_score The sccore result of rec model will be written into this parameter.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, std::string* text, float* rec_score);
|
||||
/** \brief BatchPredict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] rec_results The output of OCR recognition model result will be writen to this structure.
|
||||
* \param[in] texts The list of text results of rec model will be written into this vector.
|
||||
* \param[in] rec_scores The list of sccore result of rec model will be written into this vector.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
|
Reference in New Issue
Block a user