mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link * Improve PPOCR comments
81 lines
3.7 KiB
C++
Executable File
81 lines
3.7 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/cls_postprocessor.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All OCR series model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace ocr {
|
|
/*! @brief Classifier object is used to load the classification model provided by PaddleOCR.
|
|
*/
|
|
class FASTDEPLOY_DECL Classifier : public FastDeployModel {
|
|
public:
|
|
Classifier();
|
|
/** \brief Set path of model file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
|
|
* \param[in] params_file Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format.
|
|
*/
|
|
Classifier(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
/// Get model's name
|
|
std::string ModelName() const { return "ppocr/ocr_cls"; }
|
|
|
|
/** \brief Predict the input image and get OCR classification model cls_result.
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] cls_label The label result of cls model will be written in to this param.
|
|
* \param[in] cls_score The score result of cls model will be written in to this param.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img,
|
|
int32_t* cls_label, float* cls_score);
|
|
/** \brief BatchPredict the input image and get OCR classification model cls_result.
|
|
*
|
|
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] cls_labels The label results of cls model will be written in to this vector.
|
|
* \param[in] cls_scores The score results of cls model will be written in to this vector.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<int32_t>* cls_labels,
|
|
std::vector<float>* cls_scores);
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<int32_t>* cls_labels,
|
|
std::vector<float>* cls_scores,
|
|
size_t start_index, size_t end_index);
|
|
|
|
ClassifierPreprocessor preprocessor_;
|
|
ClassifierPostprocessor postprocessor_;
|
|
|
|
private:
|
|
bool Initialize();
|
|
};
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|