Files
FastDeploy/fastdeploy/vision/ocr/ppocr/classifier.h
yunyaoXYY f601d076e4 [Other] Improve some PPOCR API comments. (#875)
* Fix links in readme

* Fix links in readme

* Update PPOCRv2/v3 examples

* Update auto compression configs

* Add neww quantization  support for paddleclas model

* Update quantized Yolov6s model download link

* Improve PPOCR comments
2022-12-14 10:08:31 +08:00

81 lines
3.7 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/vision/ocr/ppocr/cls_postprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief Classifier object is used to load the classification model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL Classifier : public FastDeployModel {
public:
Classifier();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
Classifier(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_cls"; }
/** \brief Predict the input image and get OCR classification model cls_result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] cls_label The label result of cls model will be written in to this param.
* \param[in] cls_score The score result of cls model will be written in to this param.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(const cv::Mat& img,
int32_t* cls_label, float* cls_score);
/** \brief BatchPredict the input image and get OCR classification model cls_result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] cls_labels The label results of cls model will be written in to this vector.
* \param[in] cls_scores The score results of cls model will be written in to this vector.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores);
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores,
size_t start_index, size_t end_index);
ClassifierPreprocessor preprocessor_;
ClassifierPostprocessor postprocessor_;
private:
bool Initialize();
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy