[Others] Maintain the mtp branch temporarily. (#5447)

This commit is contained in:
lzy
2025-12-09 19:41:33 +08:00
committed by GitHub
parent 9b5b08cb72
commit f08fb25cfe
4 changed files with 508 additions and 209 deletions

View File

@@ -2451,6 +2451,7 @@ __global__ void merge_multi_chunks_v2_kernel(
if (bid == -1) {
continue;
}
const uint32_t local_seq_id = qid - cu_seqlens_q[bid];
const int seq_len_q = seq_lens_q[bid];
if (seq_len_q == 0) continue;
int seq_len_kv = seq_lens_kv[bid];
@@ -2494,14 +2495,32 @@ __global__ void merge_multi_chunks_v2_kernel(
}
#pragma unroll 2
for (int i = ty; i < num_chunks_this_seq; i += bdy) {
uint32_t offset = (qid * num_chunks + i) * num_heads + hid;
uint32_t offset;
if (ENABLE_PREFILL) {
offset = (qid * num_chunks + i) * num_heads + hid;
} else {
offset =
((bid * speculate_max_draft_token_num + local_seq_id) * num_chunks +
i) *
num_heads +
hid;
}
float m_prev = m;
float d_prev = d;
const float m_now = multi_m[offset];
const float d_now = multi_d[offset];
m = max(m_prev, m_now);
offset = (qid * num_chunks * num_heads + i * num_heads + hid) * head_dim +
vid * vec_size;
if (ENABLE_PREFILL) {
offset =
(qid * num_chunks * num_heads + i * num_heads + hid) * head_dim +
vid * vec_size;
} else {
offset = ((bid * speculate_max_draft_token_num + local_seq_id) *
num_chunks * num_heads +
i * num_heads + hid) *
head_dim +
vid * vec_size;
}
Load<T, vec_size>(&multi_out[offset], &load_vec);
const float scale1 = __expf(m_prev - m), scale2 = __expf(m_now - m);
const T scale1_T = static_cast<T>(scale1),

View File

@@ -134,9 +134,17 @@ __global__ void multi_query_append_attention_kernel(
T *o_base_ptr_T = nullptr;
OutT *o_base_ptr_int8 = nullptr;
if constexpr (partition_kv) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
if (ENABLE_PREFILL) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
} else {
o_base_ptr_int8 = out + o_offset;
}
@@ -386,8 +394,18 @@ __global__ void multi_query_append_attention_kernel(
const uint32_t qo_head_idx = q_head_idx + qo_idx_now % GROUP_SIZE;
const uint32_t qo_idx = q_start_seq_id + qo_idx_now / GROUP_SIZE;
if (qo_idx - q_start_seq_id < q_len) {
uint32_t offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
uint32_t offset;
if (ENABLE_PREFILL) {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
} else {
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
}
@@ -524,9 +542,11 @@ __global__ void multi_query_append_attention_warp1_4_kernel(
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
}
const int *mask_offset_this_seq =
@@ -794,8 +814,12 @@ __global__ void multi_query_append_attention_warp1_4_kernel(
offset = (batch_id * num_chunks + chunk_idx) * q_num_heads +
qo_head_idx;
} else {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
@@ -1026,51 +1050,95 @@ void MultiQueryAppendAttention(
sliding_window);
// merge
constexpr int vec_size = num_elems_per_128b<NV_TYPE>();
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num),
num_heads); // 128k is too large
dim3 blocks_merge(blockx, blocky);
auto *kernelFn = merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>;
launchWithPdlWhenEnabled(
kernelFn,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
if (is_decoder) {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(bsz, num_heads);
dim3 blocks_merge(blockx, blocky);
auto *kernelFn = merge_multi_chunks_decoder_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>;
launchWithPdlWhenEnabled(
kernelFn,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM);
} else {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num),
num_heads); // 128k is too large
dim3 blocks_merge(blockx, blocky);
auto *kernelFn = merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>;
launchWithPdlWhenEnabled(
kernelFn,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
}
}
} else {
constexpr uint32_t num_frags_z = BLOCK_SIZE / 16 / NUM_WARP_KV;
@@ -1189,15 +1257,31 @@ void MultiQueryAppendAttention(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(bsz * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
if (ENABLE_PREFILL) {
tmp_workspace =
allocator->Allocate(phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks *
num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
}
}
launchWithPdlWhenEnabled(
split_kv_kernel,

View File

@@ -169,9 +169,17 @@ __global__ void multi_query_append_attention_c4_kernel(
T *o_base_ptr_T = nullptr;
OutT *o_base_ptr_int8 = nullptr;
if constexpr (partition_kv) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
if (ENABLE_PREFILL) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
} else {
o_base_ptr_int8 = out + o_offset;
}
@@ -477,8 +485,18 @@ __global__ void multi_query_append_attention_c4_kernel(
const uint32_t qo_head_idx = q_head_idx + qo_idx_now % GROUP_SIZE;
const uint32_t qo_idx = q_start_seq_id + qo_idx_now / GROUP_SIZE;
if (qo_idx - q_start_seq_id < q_len) {
uint32_t offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
uint32_t offset;
if (ENABLE_PREFILL) {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
} else {
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
}
@@ -651,9 +669,11 @@ __global__ void multi_query_append_attention_c4_warp1_4_kernel(
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
}
const int *mask_offset_this_seq =
@@ -969,8 +989,12 @@ __global__ void multi_query_append_attention_c4_warp1_4_kernel(
offset = (batch_id * num_chunks + chunk_idx) * q_num_heads +
qo_head_idx;
} else {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
@@ -1161,15 +1185,30 @@ void MultiQueryAppendC4Attention(
sliding_window);
} else {
phi::Allocator::AllocationPtr tmp_workspace, tmp_m, tmp_d;
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
if (ENABLE_PREFILL) {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
}
launchWithPdlWhenEnabled(
split_kv_kernel,
grids,
@@ -1220,49 +1259,92 @@ void MultiQueryAppendC4Attention(
sliding_window);
// merge
constexpr int vec_size = num_elems_per_128b<NV_TYPE>();
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num), num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
if (is_decoder) {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(bsz, num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_decoder_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM);
} else {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num), num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
}
}
} else {
constexpr uint32_t num_frags_z = BLOCK_SIZE / 16 / NUM_WARP_KV * 4;
@@ -1402,15 +1484,31 @@ void MultiQueryAppendC4Attention(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(bsz * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
if (ENABLE_PREFILL) {
tmp_workspace =
allocator->Allocate(phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks *
num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
}
}
launchWithPdlWhenEnabled(
split_kv_kernel,

View File

@@ -178,9 +178,17 @@ __global__ void multi_query_append_attention_c8_kernel(
T *o_base_ptr_T = nullptr;
OutT *o_base_ptr_int8 = nullptr;
if constexpr (partition_kv) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
if (ENABLE_PREFILL) {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
} else {
o_base_ptr_int8 = out + o_offset;
}
@@ -524,8 +532,18 @@ __global__ void multi_query_append_attention_c8_kernel(
const uint32_t qo_head_idx = q_head_idx + qo_idx_now % GROUP_SIZE;
const uint32_t qo_idx = q_start_seq_id + qo_idx_now / GROUP_SIZE;
if (qo_idx - q_start_seq_id < q_len) {
uint32_t offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
uint32_t offset;
if (ENABLE_PREFILL) {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
} else {
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
}
@@ -702,9 +720,11 @@ __global__ void multi_query_append_attention_c8_warp1_4_kernel(
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
} else {
o_base_ptr_T = tmp_workspace + q_start_seq_id * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
o_base_ptr_T =
tmp_workspace +
batch_id * speculate_max_draft_token_num * num_chunks * q_n_stride +
chunk_idx * q_n_stride + q_head_idx * HEAD_DIM +
tid % 8 * num_elems_per_128b<T>();
}
}
const int *mask_offset_this_seq =
@@ -1063,8 +1083,12 @@ __global__ void multi_query_append_attention_c8_warp1_4_kernel(
offset = (batch_id * num_chunks + chunk_idx) * q_num_heads +
qo_head_idx;
} else {
offset =
(qo_idx * num_chunks + chunk_idx) * q_num_heads + qo_head_idx;
offset = ((batch_id * speculate_max_draft_token_num +
qo_idx_now / GROUP_SIZE) *
num_chunks +
chunk_idx) *
q_num_heads +
qo_head_idx;
}
tmp_m[offset] = m_frag[fx][j];
tmp_d[offset] = d_frag[fx][j];
@@ -1288,15 +1312,30 @@ void MultiQueryAppendC8Attention(
sliding_window);
} else {
phi::Allocator::AllocationPtr tmp_workspace, tmp_m, tmp_d;
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
if (ENABLE_PREFILL) {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
}
launchWithPdlWhenEnabled(
split_kv_kernel,
grids,
@@ -1341,49 +1380,92 @@ void MultiQueryAppendC8Attention(
sliding_window);
// merge
constexpr int vec_size = num_elems_per_128b<NV_TYPE>();
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num), num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
if (is_decoder) {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(bsz, num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_decoder_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM);
} else {
constexpr int blockx = HEAD_DIM / vec_size;
constexpr int blocky = (128 + blockx - 1) / blockx;
dim3 grids_merge(min(sm_count * 4, token_num), num_heads);
dim3 blocks_merge(blockx, blocky);
launchWithPdlWhenEnabled(
merge_multi_chunks_v2_kernel<NV_TYPE,
vec_size,
blocky,
HEAD_DIM,
OUT_NV_TYPE,
ENABLE_PREFILL>,
grids_merge,
blocks_merge,
0,
stream,
reinterpret_cast<NV_TYPE *>(tmp_workspace->ptr()),
static_cast<float *>(tmp_m->ptr()),
static_cast<float *>(tmp_d->ptr()),
seq_lens_q.data<int>(),
seq_lens_kv.data<int>(),
seq_lens_encoder.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
shift_bias ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(shift_bias.get().data<T>()))
: nullptr,
smooth_weight ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(smooth_weight.get().data<T>()))
: nullptr,
sinks ? reinterpret_cast<NV_TYPE *>(
const_cast<T *>(sinks.get().data<T>()))
: nullptr,
reinterpret_cast<OUT_NV_TYPE *>(out->data<OutT>()),
quant_max_bound,
quant_min_bound,
in_scale,
max_seq_len,
num_chunks,
num_heads,
chunk_size,
HEAD_DIM,
token_num,
speculate_max_draft_token_num);
}
}
} else {
constexpr uint32_t num_frags_z = BLOCK_SIZE / 16 / NUM_WARP_KV * 2;
@@ -1555,15 +1637,31 @@ void MultiQueryAppendC8Attention(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(bsz * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
if (ENABLE_PREFILL) {
tmp_workspace =
allocator->Allocate(phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(token_num * num_chunks *
num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(token_num * num_chunks * num_heads));
} else {
tmp_workspace = allocator->Allocate(
phi::SizeOf(qkv.dtype()) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads * HEAD_DIM));
tmp_m = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
tmp_d = allocator->Allocate(
phi::SizeOf(paddle::DataType::FLOAT32) *
static_cast<size_t>(speculate_max_draft_token_num * bsz *
num_chunks * num_heads));
}
}
launchWithPdlWhenEnabled(
split_kv_kernel,