【Hackathon 9th No.61、65】add test_draft_model_update (#3940)

* add draft_model_update test

* fix

* fix

* fix

* fix

* fix
This commit is contained in:
co63oc
2025-09-15 11:19:50 +08:00
committed by GitHub
parent f213ae1e86
commit ef4a1aa2da
2 changed files with 413 additions and 0 deletions

View File

@@ -0,0 +1,248 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import draft_model_update
def is_in_end(id, end_ids, length):
flag = False
for i in range(length):
if id == end_ids[i]:
return True
return flag
# recalculate data offset, offset_new is starting from index 0
def get_inter_next_tokens_start_offset(inter_next_tokens, max_seq_len, start_id, offset):
offset_new = start_id + offset
return inter_next_tokens[int(offset_new / max_seq_len)][int(offset_new % max_seq_len)]
def draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
):
stop_sum = 0
for tid in range(bsz):
stop_flag_now_int = 0
draft_token_now = draft_tokens[tid]
pre_ids_now = pre_ids[tid]
base_model_draft_tokens_now = base_model_draft_tokens[tid]
next_tokens_start_id = tid * max_seq_len - output_cum_offsets[tid]
# next_tokens_start =
seq_len_this_time = seq_lens_this_time[tid]
seq_len_encoder = seq_lens_encoder[tid]
seq_len_decoder = seq_lens_decoder[tid]
# 1. update step_idx && seq_lens_dec
if not stop_flags[tid]: # seq_lens_decoder > 0 or seq_lens_encoder > 0
token_this_time = -1
# decoder step
if seq_len_decoder > 0 and seq_len_encoder <= 0:
seq_lens_decoder[tid] += seq_len_this_time
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, seq_len_this_time - 1
)
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time
step_idx[tid] += seq_len_this_time
pre_ids_now[step_idx[tid]] = token_this_time
else:
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, 0
)
# seq_lens_decoder[tid] = seq_lens_encoder[tid]
seq_lens_decoder[tid] = seq_len_encoder + seq_len_decoder
seq_lens_encoder[tid] = 0
pre_ids_now[1] = token_this_time
step_idx[tid] += 1
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time
# multi_end
if is_in_end(token_this_time, end_ids, end_ids_len) or prefill_one_step_stop:
stop_flags[tid] = True
stop_flag_now_int = 1
# max_dec_len
elif step_idx[tid] >= max_dec_len[tid]:
stop_flags[tid] = True
draft_token_now[seq_len_this_time - 1] = end_ids[0]
base_model_draft_tokens_now[substep + 1] = end_ids[0]
stop_flag_now_int = 1
else:
draft_token_now[0] = -1
base_model_draft_tokens_now[substep + 1] = -1
stop_flag_now_int = 1
# 2. set end
if not stop_flags[tid]:
seq_lens_this_time[tid] = 1
else:
seq_lens_this_time[tid] = 0
seq_lens_encoder[tid] = 0
stop_sum = stop_sum + stop_flag_now_int
not_need_stop[0] = stop_sum < bsz
def draft_model_update_ref(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
):
seq_lens_this_time_shape = seq_lens_this_time.shape
real_bsz = seq_lens_this_time_shape[0]
end_ids_len = end_ids.shape[0]
max_draft_token = draft_tokens.shape[1]
pre_id_length = pre_ids.shape[1]
max_base_model_draft_token = base_model_draft_tokens.shape[1]
prefill_one_step_stop = False
import os
env = os.getenv("PREFILL_NODE_ONE_STEP_STOP")
if env == "1":
prefill_one_step_stop = True
draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
real_bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
)
class TestDraftModelUpdate(unittest.TestCase):
def test_draft_model_update(self):
self._run_paddle_test()
def _run_paddle_test(self):
np.random.seed(42)
paddle.seed(42)
max_bsz = 128
max_draft_token = 3
pre_id_length = 3
max_seq_len = 100
max_base_model_draft_token = 4
substep = 2
inter_next_tokens = paddle.randint(1, 100, shape=(max_bsz, max_seq_len), dtype="int64")
draft_tokens = paddle.randint(1, 100, shape=(max_bsz, max_draft_token), dtype="int64")
pre_ids = paddle.randint(1, 100, shape=(max_bsz, pre_id_length), dtype="int64")
seq_lens_this_time = paddle.randint(1, 2, shape=(max_bsz,), dtype="int32")
seq_lens_encoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
seq_lens_decoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
step_idx = paddle.randint(1, 10, shape=(max_bsz,), dtype="int64")
output_cum_offsets = paddle.randint(0, 2, shape=(max_bsz,), dtype="int32")
output_cum_offsets[0] = 0
stop_flags = paddle.zeros([max_bsz], dtype="bool")
not_need_stop = paddle.zeros([1], dtype="bool").to(device=paddle.CPUPlace())
max_dec_len = paddle.randint(100, 102, shape=(max_bsz,), dtype="int64")
end_ids = paddle.to_tensor([2], dtype="int64")
base_model_draft_tokens = paddle.randint(1, 10, shape=(max_bsz, max_base_model_draft_token), dtype="int64")
inputs = (
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
)
# inplace modify, need to clone inputs
inputs_clone = [x.clone() if isinstance(x, paddle.Tensor) else x for x in inputs]
draft_model_update(*inputs)
draft_model_update_ref(*inputs_clone)
idx_list = (
1,
2,
3,
4,
5,
6,
8,
9,
12,
)
for i in idx_list:
np.testing.assert_allclose(inputs[i].numpy(), inputs_clone[i].numpy())
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,165 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import speculate_update
def speculate_update_np(
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
accept_tokens,
accept_num,
stop_flags,
seq_lens_this_time,
is_block_step,
stop_nums,
):
stop_sum = 0
real_bsz = seq_lens_this_time.shape[0]
max_bsz = stop_flags.shape[0]
max_draft_tokens = draft_tokens.shape[1]
for bid in range(max_bsz):
stop_flag_now_int = 0
inactive = bid >= real_bsz
block_step = (not inactive) and is_block_step[bid]
if (not block_step) and (not inactive):
if stop_flags[bid]:
stop_flag_now_int = 1
if seq_lens_encoder[bid] == 0:
seq_lens_decoder[bid] += accept_num[bid]
if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1):
cur_len = actual_draft_token_nums[bid]
if accept_num[bid] - 1 == cur_len:
if cur_len + 2 <= max_draft_tokens - 1:
cur_len += 2
elif cur_len + 1 <= max_draft_tokens - 1:
cur_len += 1
else:
cur_len = max_draft_tokens - 1
else:
cur_len = max(1, cur_len - 1)
actual_draft_token_nums[bid] = cur_len
if seq_lens_encoder[bid] != 0:
seq_lens_decoder[bid] += seq_lens_encoder[bid]
seq_lens_encoder[bid] = 0
draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1]
if stop_flag_now_int:
seq_lens_decoder[bid] = 0
elif inactive:
stop_flag_now_int = 1
stop_sum += stop_flag_now_int
not_need_stop[0] = stop_sum < stop_nums[0]
return (
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
)
def gen_inputs(
max_bsz=512,
max_draft_tokens=16,
real_bsz=123,
seed=2022,
):
rng = np.random.default_rng(seed)
seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32)
seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32)
not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_)
draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
stop_nums = np.array([5], dtype=np.int64)
seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
return {
"seq_lens_encoder": seq_lens_encoder,
"seq_lens_decoder": seq_lens_decoder,
"not_need_stop": not_need_stop,
"draft_tokens": draft_tokens,
"actual_draft_token_nums": actual_draft_nums,
"accept_tokens": accept_tokens,
"accept_num": accept_num,
"stop_flags": stop_flags,
"seq_lens_this_time": seq_lens_this_time,
"is_block_step": is_block_step,
"stop_nums": stop_nums,
}
class TestSpeculateUpdate(unittest.TestCase):
def test_speculate_update(self):
inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201)
paddle_inputs = {}
for k, v in inputs.items():
paddle_inputs[k] = paddle.to_tensor(v)
paddle_inputs["not_need_stop"] = paddle_inputs["not_need_stop"].to(device=paddle.CPUPlace())
np_inputs = {
k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k])
for k in paddle_inputs
}
speculate_update(*(paddle_inputs.values()))
pd_tensors = (
paddle_inputs["seq_lens_encoder"],
paddle_inputs["seq_lens_decoder"],
paddle_inputs["not_need_stop"],
paddle_inputs["draft_tokens"],
paddle_inputs["actual_draft_token_nums"],
)
out_np = speculate_update_np(**np_inputs)
names = [
"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",
"draft_tokens",
"actual_draft_token_nums",
]
for name, pd_val, np_val in zip(names, pd_tensors, out_np):
np.testing.assert_allclose(pd_val.numpy(), np_val)
if __name__ == "__main__":
unittest.main()