mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
166 lines
5.3 KiB
Python
166 lines
5.3 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import speculate_update
|
|
|
|
|
|
def speculate_update_np(
|
|
seq_lens_encoder,
|
|
seq_lens_decoder,
|
|
not_need_stop,
|
|
draft_tokens,
|
|
actual_draft_token_nums,
|
|
accept_tokens,
|
|
accept_num,
|
|
stop_flags,
|
|
seq_lens_this_time,
|
|
is_block_step,
|
|
stop_nums,
|
|
):
|
|
stop_sum = 0
|
|
real_bsz = seq_lens_this_time.shape[0]
|
|
max_bsz = stop_flags.shape[0]
|
|
max_draft_tokens = draft_tokens.shape[1]
|
|
|
|
for bid in range(max_bsz):
|
|
stop_flag_now_int = 0
|
|
inactive = bid >= real_bsz
|
|
block_step = (not inactive) and is_block_step[bid]
|
|
|
|
if (not block_step) and (not inactive):
|
|
|
|
if stop_flags[bid]:
|
|
stop_flag_now_int = 1
|
|
|
|
if seq_lens_encoder[bid] == 0:
|
|
seq_lens_decoder[bid] += accept_num[bid]
|
|
|
|
if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1):
|
|
cur_len = actual_draft_token_nums[bid]
|
|
if accept_num[bid] - 1 == cur_len:
|
|
if cur_len + 2 <= max_draft_tokens - 1:
|
|
cur_len += 2
|
|
elif cur_len + 1 <= max_draft_tokens - 1:
|
|
cur_len += 1
|
|
else:
|
|
cur_len = max_draft_tokens - 1
|
|
else:
|
|
cur_len = max(1, cur_len - 1)
|
|
actual_draft_token_nums[bid] = cur_len
|
|
|
|
if seq_lens_encoder[bid] != 0:
|
|
seq_lens_decoder[bid] += seq_lens_encoder[bid]
|
|
seq_lens_encoder[bid] = 0
|
|
|
|
draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1]
|
|
|
|
if stop_flag_now_int:
|
|
seq_lens_decoder[bid] = 0
|
|
|
|
elif inactive:
|
|
stop_flag_now_int = 1
|
|
|
|
stop_sum += stop_flag_now_int
|
|
not_need_stop[0] = stop_sum < stop_nums[0]
|
|
|
|
return (
|
|
seq_lens_encoder,
|
|
seq_lens_decoder,
|
|
not_need_stop,
|
|
draft_tokens,
|
|
actual_draft_token_nums,
|
|
)
|
|
|
|
|
|
def gen_inputs(
|
|
max_bsz=512,
|
|
max_draft_tokens=16,
|
|
real_bsz=123,
|
|
seed=2022,
|
|
):
|
|
rng = np.random.default_rng(seed)
|
|
|
|
seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32)
|
|
seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32)
|
|
not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_)
|
|
draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
|
|
actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
|
|
accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
|
|
accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
|
|
stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
|
|
is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
|
|
stop_nums = np.array([5], dtype=np.int64)
|
|
|
|
seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
|
|
|
|
return {
|
|
"seq_lens_encoder": seq_lens_encoder,
|
|
"seq_lens_decoder": seq_lens_decoder,
|
|
"not_need_stop": not_need_stop,
|
|
"draft_tokens": draft_tokens,
|
|
"actual_draft_token_nums": actual_draft_nums,
|
|
"accept_tokens": accept_tokens,
|
|
"accept_num": accept_num,
|
|
"stop_flags": stop_flags,
|
|
"seq_lens_this_time": seq_lens_this_time,
|
|
"is_block_step": is_block_step,
|
|
"stop_nums": stop_nums,
|
|
}
|
|
|
|
|
|
class TestSpeculateUpdate(unittest.TestCase):
|
|
def test_speculate_update(self):
|
|
inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201)
|
|
|
|
paddle_inputs = {}
|
|
for k, v in inputs.items():
|
|
paddle_inputs[k] = paddle.to_tensor(v)
|
|
paddle_inputs["not_need_stop"] = paddle_inputs["not_need_stop"].to(device=paddle.CPUPlace())
|
|
|
|
np_inputs = {
|
|
k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k])
|
|
for k in paddle_inputs
|
|
}
|
|
|
|
speculate_update(*(paddle_inputs.values()))
|
|
pd_tensors = (
|
|
paddle_inputs["seq_lens_encoder"],
|
|
paddle_inputs["seq_lens_decoder"],
|
|
paddle_inputs["not_need_stop"],
|
|
paddle_inputs["draft_tokens"],
|
|
paddle_inputs["actual_draft_token_nums"],
|
|
)
|
|
|
|
out_np = speculate_update_np(**np_inputs)
|
|
|
|
names = [
|
|
"seq_lens_encoder",
|
|
"seq_lens_decoder",
|
|
"not_need_stop",
|
|
"draft_tokens",
|
|
"actual_draft_token_nums",
|
|
]
|
|
|
|
for name, pd_val, np_val in zip(names, pd_tensors, out_np):
|
|
np.testing.assert_allclose(pd_val.numpy(), np_val)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|