mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 00:06:38 +08:00
Merge vl execution path into normal execution path (#2829)
* merge vl model into gpu_model runner Change-Id: I9f4691a3d5f135e8d72b1d58abcd15ef3aa3f2a6 * fix chinese Change-Id: Ic7405109b984c21e076fb3b01ff6feb571d0119a * fix the parse parameter Change-Id: I4cd62ee87c06220af580d91e347145d4394917fe * fix the bug in online_inference Change-Id: Idb111bb2114e83017c4050b2a68cf039c6d3c559 * polish code Change-Id: I7d4194102c2f1b0743b74fbd5fc284eb8ef4d17c
This commit is contained in:
@@ -18,7 +18,7 @@ from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
from typing import Literal, Optional
|
||||
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
from paddleformers.trl import llm_utils
|
||||
@@ -89,6 +89,7 @@ class ModelConfig:
|
||||
self.max_model_len = 0
|
||||
self.dtype = ""
|
||||
self.enable_logprob = False
|
||||
self.enable_mm = False
|
||||
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
|
@@ -990,8 +990,6 @@ class LLMEngine(object):
|
||||
pd_cmd = pd_cmd + f" --log_dir {log_dir}"
|
||||
|
||||
worker_path = "../worker/worker_process.py"
|
||||
if self.cfg.enable_mm:
|
||||
worker_path = "../worker/vl_worker_process.py"
|
||||
py_script = os.path.join(current_dir_path, worker_path)
|
||||
|
||||
ori_vocab_size = (
|
||||
@@ -1030,7 +1028,9 @@ class LLMEngine(object):
|
||||
f" --speculative_benchmark_mode {self.cfg.speculative_config.benchmark_mode}"
|
||||
f" --max_capture_batch_size {self.cfg.max_capture_batch_size}"
|
||||
f" --guided_decoding_backend {self.cfg.guided_decoding_backend}"
|
||||
f" --load_strategy {self.cfg.model_config.load_strategy}")
|
||||
f" --load_strategy {self.cfg.model_config.load_strategy}"
|
||||
f" --enable_mm {self.cfg.enable_mm}")
|
||||
|
||||
|
||||
worker_append_flag = {
|
||||
"enable_expert_parallel":
|
||||
|
@@ -129,6 +129,36 @@ def post_process_normal(sampler_output: SamplerOutput,
|
||||
save_each_rank: bool = False,
|
||||
skip_save_output: bool = False) -> ModelRunnerOutput:
|
||||
""" Post-processing steps after completing a single token generation. """
|
||||
# handle vl:
|
||||
if model_output.enable_thinking:
|
||||
exists_think_end = sampler_output.sampled_token_ids == model_output.think_end_id
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
exists_think_end,
|
||||
model_output.need_think_end - 1,
|
||||
model_output.need_think_end,
|
||||
), model_output.need_think_end)
|
||||
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
model_output.need_think_end.cast("bool"),
|
||||
model_output.reasoning_index - 1,
|
||||
model_output.reasoning_index,
|
||||
), model_output.reasoning_index)
|
||||
|
||||
stop_wo_think = (
|
||||
(sampler_output.sampled_token_ids == model_output.eos_token_id) |
|
||||
(model_output.reasoning_index == 0)) & (
|
||||
model_output.need_think_end > 0)
|
||||
sampler_output.sampled_token_ids = paddle.where(stop_wo_think,
|
||||
model_output.think_end_id,
|
||||
sampler_output.sampled_token_ids)
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
stop_wo_think,
|
||||
model_output.need_think_end - 1,
|
||||
model_output.need_think_end,
|
||||
), model_output.need_think_end)
|
||||
# 1. Set stop value
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
|
@@ -30,7 +30,8 @@ from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
|
||||
from fastdeploy.model_executor.layers.attention import get_attention_backend
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
|
||||
AttentionBackend
|
||||
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
|
||||
from fastdeploy.model_executor.layers.rotary_embedding import (get_rope,
|
||||
get_rope_3d)
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.sampler import (
|
||||
Sampler, SpeculativeSampler)
|
||||
@@ -46,9 +47,14 @@ from fastdeploy.platforms import current_platform
|
||||
if not current_platform.is_dcu():
|
||||
from fastdeploy.spec_decode import MTPProposer, NgramProposer
|
||||
|
||||
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
||||
from fastdeploy.input.mm_processor import DataProcessor
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import \
|
||||
ScatterOp
|
||||
from fastdeploy.worker.model_runner_base import ModelRunnerBase
|
||||
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
|
||||
from fastdeploy.worker.utils import check_safetensors_model
|
||||
|
||||
|
||||
class GPUModelRunner(ModelRunnerBase):
|
||||
@@ -61,6 +67,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
rank: int,
|
||||
local_rank: int):
|
||||
super().__init__(fd_config=fd_config, device=device)
|
||||
self.enable_mm = self.model_config.enable_mm
|
||||
self.rank = rank
|
||||
self.local_rank = local_rank
|
||||
self.device_id = device_id
|
||||
@@ -72,6 +79,37 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
if self.fd_config.parallel_config.guided_decoding_backend != "off":
|
||||
self.guided_backend = get_guided_backend(fd_config=self.fd_config)
|
||||
|
||||
# VL model config:
|
||||
if self.enable_mm:
|
||||
model_path = os.path.dirname(self.parallel_config.model_name_or_path)
|
||||
self.is_safetensors_model = check_safetensors_model(
|
||||
self.parallel_config.model_name_or_path)
|
||||
if not self.is_safetensors_model:
|
||||
self.tokenizer_path = self.image_preprocessor_path = model_path
|
||||
else:
|
||||
self.tokenizer_path = self.parallel_config.model_name_or_path
|
||||
self.image_preprocessor_path = self.parallel_config.model_name_or_path
|
||||
self.vision_model_name_or_path = os.path.join(
|
||||
model_path, "DFNRopeVisionTransformer")
|
||||
|
||||
self.amp_black = [
|
||||
"reduce_sum",
|
||||
"c_softmax_with_cross_entropy",
|
||||
"elementwise_div",
|
||||
"sin",
|
||||
"cos",
|
||||
"sort",
|
||||
"multinomial",
|
||||
]
|
||||
self.amp_white = [
|
||||
"lookup_table",
|
||||
"lookup_table_v2",
|
||||
"flash_attn",
|
||||
"matmul",
|
||||
"matmul_v2",
|
||||
"fused_gemm_epilogue",
|
||||
]
|
||||
|
||||
# Sampler
|
||||
if not self.speculative_decoding:
|
||||
self.sampler = Sampler()
|
||||
@@ -216,19 +254,52 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
logger.info(
|
||||
f"prefill_chunk_info: {request.prefill_chunk_info}")
|
||||
token_chunk_size = request.prefill_chunk_info[0]
|
||||
self.share_inputs["seq_lens_this_time"][
|
||||
idx:idx + 1] = token_chunk_size
|
||||
if self.enable_mm:
|
||||
inputs = self._preprocess_mm_task(token_chunk_size)
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs["image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
if request.multimodal_inputs["position_ids"] is not None:
|
||||
position_ids = paddle.to_tensor(
|
||||
request.multimodal_inputs["position_ids"],
|
||||
dtype="int64").unsqueeze([0])
|
||||
else:
|
||||
position_ids = None
|
||||
token_chunk_size = inputs["input_ids"].shape[1]
|
||||
request.set("start_idx", token_chunk_size)
|
||||
self.share_inputs["input_ids"][
|
||||
idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
|
||||
else:
|
||||
self.share_inputs['input_ids'][
|
||||
idx, :token_chunk_size] = np.array(
|
||||
request.prompt_token_ids[:token_chunk_size])
|
||||
self.share_inputs['step_seq_lens_encoder'][
|
||||
idx:idx + 1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_decoder'][
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs['step_seq_lens_decoder'][
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][
|
||||
idx:idx + 1] = token_chunk_size
|
||||
self.share_inputs['step_seq_lens_encoder'][
|
||||
idx:idx + 1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
else:
|
||||
if self.enable_mm:
|
||||
inputs = self._preprocess_mm_task(request.multimodal_inputs)
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs[
|
||||
"image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
position_ids = inputs["position_ids"]
|
||||
length = inputs["input_ids"].shape[1]
|
||||
self.share_inputs["input_ids"][
|
||||
idx:idx + 1, :length] = inputs["input_ids"]
|
||||
else:
|
||||
self.share_inputs['seq_lens_decoder'][
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
@@ -240,21 +311,41 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
1] = length
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
|
||||
|
||||
if self.enable_mm:
|
||||
enable_thinking = request.get("enable_thinking", True)
|
||||
enable_thinking = enable_thinking if enable_thinking is not None else True
|
||||
self.share_inputs["enable_thinking"][:] = enable_thinking
|
||||
self.share_inputs["need_think_end"][
|
||||
idx:idx + 1, :] = 1 if enable_thinking else 0
|
||||
self.share_inputs["reasoning_index"][
|
||||
idx:idx + 1, :] = request.get("reasoning_max_tokens", 2048)
|
||||
self.share_inputs["rope_emb"][idx:idx +
|
||||
1, :] = self.prepare_rope3d(
|
||||
position_ids, request.get("max_tokens", 2048))
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
||||
|
||||
def get_attr_from_request(request, attr, default_value=None):
|
||||
res = request.get(attr, default_value)
|
||||
if res is not None:
|
||||
return res
|
||||
else:
|
||||
return default_value
|
||||
|
||||
|
||||
if len(request.eos_token_ids
|
||||
) < self.parallel_config.eos_tokens_lens:
|
||||
request.eos_token_ids.append(request.eos_token_ids[0])
|
||||
self.share_inputs["eos_token_id"][:] = np.array(
|
||||
request.eos_token_ids, dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["top_p"][idx:idx + 1] = request.get("top_p", 0.7)
|
||||
self.share_inputs["top_p"][idx:idx + 1] = get_attr_from_request(request, "top_p", 0.7)
|
||||
self.share_inputs["top_k"][idx:idx + 1] = request.get("top_k", 0)
|
||||
self.share_inputs["temperature"][idx:idx + 1] = request.get(
|
||||
"temperature", 0.95)
|
||||
self.share_inputs["penalty_score"][idx:idx + 1] = request.get(
|
||||
"repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx:idx + 1] = request.get(
|
||||
"frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx:idx + 1] = request.get(
|
||||
"presence_penalty", 0.0)
|
||||
self.share_inputs["temperature"][idx:idx + 1] = get_attr_from_request(request,"temperature", 0.95)
|
||||
self.share_inputs["penalty_score"][idx:idx + 1] = get_attr_from_request(
|
||||
request, "repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx:idx + 1] = get_attr_from_request(
|
||||
request, "frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx:idx + 1] = get_attr_from_request(
|
||||
request, "presence_penalty", 0.0)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
|
||||
"min_tokens", 1)
|
||||
@@ -301,6 +392,9 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
expected_decode_len: int):
|
||||
""" Set dummy prefill inputs to share_inputs """
|
||||
# NOTE(gongshaotian): The maximum decoding length is equal to the expected decoded tokens plus the eos token
|
||||
if self.enable_mm:
|
||||
self.share_inputs["free_list"] = paddle.to_tensor([], dtype="int32")
|
||||
self.share_inputs["free_list_len"][0] = 0
|
||||
max_dec_len = expected_decode_len + 1
|
||||
full_length = min(num_tokens // batch_size,
|
||||
self.parallel_config.max_model_len - max_dec_len)
|
||||
@@ -476,6 +570,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.parallel_config.max_model_len).reshape((1, -1))
|
||||
|
||||
# TODO(gongshaotian): move to models
|
||||
if not self.enable_mm:
|
||||
self.share_inputs["rope_emb"] = get_rope(
|
||||
rotary_dim=self.model_config.head_dim,
|
||||
position_ids=tmp_position_ids,
|
||||
@@ -541,6 +636,24 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
fill_value=0,
|
||||
dtype="int32")
|
||||
|
||||
if self.enable_mm:
|
||||
head_dim = self.model_config.head_dim
|
||||
self.share_inputs["rope_emb"] = paddle.full(shape=[
|
||||
max_num_seqs, 2, 1, self.parallel_config.max_model_len, 1, head_dim // 2
|
||||
],
|
||||
fill_value=0,
|
||||
dtype="float32")
|
||||
self.share_inputs["image_features"] = None
|
||||
self.share_inputs["need_think_end"] = paddle.full(shape=[max_num_seqs, 1],
|
||||
fill_value=0,
|
||||
dtype="int32")
|
||||
self.share_inputs["enable_thinking"] = paddle.full(shape=[1],
|
||||
fill_value=True,
|
||||
dtype="bool")
|
||||
self.share_inputs["reasoning_index"] = paddle.full(shape=[max_num_seqs, 1],
|
||||
fill_value=0,
|
||||
dtype="int32")
|
||||
|
||||
def _prepare_inputs(self) -> None:
|
||||
""" Prepare the model inputs """
|
||||
# Remove padding
|
||||
@@ -598,6 +711,8 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
f"Starting to load model {self.model_config.architectures[0]}")
|
||||
time_before_load = time.perf_counter()
|
||||
# 1. Load original model
|
||||
if self.enable_mm:
|
||||
self.load_mm_config_and_image_preprocess()
|
||||
self.model = get_model_from_loader(fd_config=self.fd_config)
|
||||
# 1.1 Load RL dynamic model
|
||||
if self.fd_config.load_config.dynamic_load_weight:
|
||||
@@ -756,11 +871,16 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
> 1).sum() > 0)
|
||||
self.forward_meta.step_use_cudagraph = is_decode_batch and in_capturing
|
||||
self.forward_meta.is_decode_batch = is_decode_batch
|
||||
if self.enable_mm:
|
||||
hidden_states = model_output = self.model(self.share_inputs["ids_remove_padding"],
|
||||
self.share_inputs["image_features"],
|
||||
self.forward_meta)
|
||||
else:
|
||||
model_output = self.model(
|
||||
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
||||
forward_meta=self.forward_meta)
|
||||
|
||||
hiddden_states = rebuild_padding(
|
||||
hidden_states = rebuild_padding(
|
||||
model_output,
|
||||
self.share_inputs["cum_offsets"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
@@ -773,7 +893,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
# 4. Execute spec decode
|
||||
logits = self.model.compute_logits(hiddden_states)
|
||||
logits = self.model.compute_logits(hidden_states)
|
||||
|
||||
if not self.speculative_decoding:
|
||||
set_value_by_flags_and_idx(
|
||||
@@ -831,7 +951,15 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
accept_tokens=self.share_inputs["accept_tokens"]
|
||||
if self.speculative_decoding else None,
|
||||
accept_num=self.share_inputs["accept_num"]
|
||||
if self.speculative_decoding else None)
|
||||
if self.speculative_decoding else None,
|
||||
enable_thinking= self.share_inputs["enable_thinking"]
|
||||
if self.enable_mm else None,
|
||||
think_end_id=self.model_config.think_end_id
|
||||
if self.enable_mm else -1,
|
||||
need_think_end=self.share_inputs["need_think_end"]
|
||||
if self.enable_mm else None,
|
||||
reasoning_index=self.share_inputs["reasoning_index"]
|
||||
if self.enable_mm else None)
|
||||
|
||||
post_process(sampler_output=sampler_output,
|
||||
model_output=model_output_data,
|
||||
@@ -861,7 +989,6 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
"""
|
||||
if not self.parallel_config.enable_chunked_prefill:
|
||||
return
|
||||
|
||||
for task in tasks:
|
||||
if task.get("prefill_chunk_info", None) is None:
|
||||
continue
|
||||
@@ -875,28 +1002,46 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
logger.debug(
|
||||
f"{task.request_id} chunked prefill {task.chunk_idx}/{len(task.prefill_chunk_info)}"
|
||||
)
|
||||
if not self.enable_mm:
|
||||
start_idx = sum(task.prefill_chunk_info[:task.chunk_idx])
|
||||
if task.chunk_idx == len(task.prefill_chunk_info):
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = 1
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 1
|
||||
if self.enable_mm:
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx +
|
||||
1] = task.start_idx
|
||||
else:
|
||||
self.share_inputs["seq_lens_decoder"][
|
||||
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
||||
del self.restore_chunked_prefill_request[task.request_id]
|
||||
else:
|
||||
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
|
||||
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs['input_ids'][
|
||||
idx, :token_chunk_size] = np.array(
|
||||
if self.enable_mm:
|
||||
inputs = self._preprocess_mm_task(task.prefill_chunk_info[task.chunk_idx])
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs[
|
||||
"image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
token_chunk_size = inputs["input_ids"].shape[1]
|
||||
self.share_inputs["input_ids"][idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx +1] = task.start_idx
|
||||
task.start_idx += token_chunk_size
|
||||
else:
|
||||
self.share_inputs['input_ids'][idx, :token_chunk_size] = np.array(
|
||||
task.prompt_token_ids[start_idx:start_idx +
|
||||
token_chunk_size])
|
||||
self.share_inputs["seq_lens_decoder"][
|
||||
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][
|
||||
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
||||
|
||||
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled(
|
||||
):
|
||||
self.proposer.update_task_chunk_prefill(task)
|
||||
@@ -988,11 +1133,16 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
> 1).sum() > 0)
|
||||
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
|
||||
self.forward_meta.is_decode_batch = is_decode_batch
|
||||
|
||||
if self.enable_mm:
|
||||
hidden_states = model_output = self.model(self.share_inputs["ids_remove_padding"],
|
||||
self.share_inputs["image_features"],
|
||||
self.forward_meta)
|
||||
else:
|
||||
model_output = self.model(
|
||||
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
||||
forward_meta=self.forward_meta)
|
||||
|
||||
hiddden_states = rebuild_padding(
|
||||
hidden_states = rebuild_padding(
|
||||
model_output,
|
||||
self.share_inputs["cum_offsets"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
@@ -1004,7 +1154,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
# 4. Compute logits, Sample
|
||||
logits = self.model.compute_logits(hiddden_states)
|
||||
logits = self.model.compute_logits(hidden_states)
|
||||
|
||||
if not self.speculative_decoding:
|
||||
set_value_by_flags_and_idx(
|
||||
@@ -1063,7 +1213,15 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
accept_tokens=self.share_inputs["accept_tokens"]
|
||||
if self.speculative_decoding else None,
|
||||
accept_num=self.share_inputs["accept_num"]
|
||||
if self.speculative_decoding else None)
|
||||
if self.speculative_decoding else None,
|
||||
enable_thinking= self.share_inputs["enable_thinking"]
|
||||
if self.enable_mm else None,
|
||||
think_end_id=self.model_config.think_end_id
|
||||
if self.enable_mm else -1,
|
||||
need_think_end=self.share_inputs["need_think_end"]
|
||||
if self.enable_mm else None,
|
||||
reasoning_index=self.share_inputs["reasoning_index"]
|
||||
if self.enable_mm else None)
|
||||
|
||||
if self.speculative_config.method in ["mtp"] and \
|
||||
self.parallel_config.splitwise_role == "prefill":
|
||||
@@ -1240,3 +1398,155 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.initialize_kv_cache()
|
||||
self.dynamic_weight_manager._log_memory(
|
||||
"dynamic weight manager update all memory")
|
||||
|
||||
def _init_image_preprocess(self) -> None:
|
||||
processor = DataProcessor(
|
||||
tokenizer_name=self.tokenizer_path,
|
||||
image_preprocessor_name=str(self.image_preprocessor_path),
|
||||
)
|
||||
processor.eval()
|
||||
image_preprocess = processor.image_preprocessor
|
||||
image_preprocess.image_mean_tensor = paddle.to_tensor(
|
||||
image_preprocess.image_mean, dtype="float32").reshape([1, 3, 1, 1])
|
||||
image_preprocess.image_std_tensor = paddle.to_tensor(
|
||||
image_preprocess.image_std, dtype="float32").reshape([1, 3, 1, 1])
|
||||
image_preprocess.rescale_factor = paddle.to_tensor(
|
||||
image_preprocess.rescale_factor, dtype="float32")
|
||||
image_preprocess.image_mean_tensor = image_preprocess.image_mean_tensor.squeeze(
|
||||
[-2, -1]).repeat_interleave(self.model_config.vision_config.patch_size**2 * 1,
|
||||
-1)
|
||||
image_preprocess.image_std_tensor = image_preprocess.image_std_tensor.squeeze(
|
||||
[-2, -1]).repeat_interleave(self.model_config.vision_config.patch_size**2 * 1,
|
||||
-1)
|
||||
self.image_preprocess = image_preprocess
|
||||
|
||||
def load_mm_config_and_image_preprocess(self) -> None:
|
||||
tokenizer = ErnieBotTokenizer.from_pretrained(
|
||||
self.tokenizer_path,
|
||||
model_max_length=self.parallel_config.max_model_len,
|
||||
padding_side="right",
|
||||
use_fast=False,
|
||||
)
|
||||
tokenizer.ignored_index = -100
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.unk_token
|
||||
|
||||
self.fd_config.model_config.tensor_parallel_degree = self.parallel_config.tensor_parallel_size
|
||||
self.fd_config.model_config.tensor_parallel_rank = self.parallel_config.tensor_parallel_rank
|
||||
self.fd_config.model_config.moe_group="dummy"
|
||||
self.fd_config.parallel_config.column_cut = False
|
||||
vision_config = self.fd_config.model_config.vision_config
|
||||
vision_config.attn_sep = False
|
||||
vision_config.dtype = "bfloat16"
|
||||
vision_config.tensor_parallel_degree = self.parallel_config.tensor_parallel_size
|
||||
vision_config.tensor_parallel_rank = self.parallel_config.tensor_parallel_rank
|
||||
self.fd_config.model_config.pixel_hidden_size = vision_config.hidden_size
|
||||
self.fd_config.model_config.im_patch_id = tokenizer.get_vocab()[
|
||||
"<|IMAGE_PLACEHOLDER|>"
|
||||
]
|
||||
self.fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
|
||||
self.fd_config.model_config.max_text_id = self.fd_config.model_config.im_patch_id
|
||||
self.fd_config.model_config.sequence_parallel = False
|
||||
self.model_config = self.fd_config.model_config
|
||||
self._init_image_preprocess()
|
||||
|
||||
def _preprocess_mm_task(self, one: dict) -> None:
|
||||
"""process batch"""
|
||||
|
||||
input_ids = one["input_ids"][np.newaxis, :]
|
||||
input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
|
||||
token_type_ids = one["token_type_ids"][np.newaxis, :]
|
||||
token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
|
||||
|
||||
if one["images"] is not None:
|
||||
image_type_ids = one["image_type_ids"][np.newaxis, :]
|
||||
images = one["images"]
|
||||
image_type_ids = paddle.to_tensor(image_type_ids,
|
||||
dtype=paddle.int64)
|
||||
images = paddle.to_tensor(images, dtype="uint8")
|
||||
grid_thw = paddle.to_tensor(one["grid_thw"], dtype="int64")
|
||||
else:
|
||||
image_type_ids = None
|
||||
images = None
|
||||
grid_thw = None
|
||||
|
||||
if one["position_ids"] is not None:
|
||||
position_ids = paddle.to_tensor(one["position_ids"],
|
||||
dtype="int64").unsqueeze([0])
|
||||
else:
|
||||
position_ids = None
|
||||
|
||||
result = dict(
|
||||
input_ids=input_ids,
|
||||
image_type_ids=image_type_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
grid_thw=grid_thw,
|
||||
images=images,
|
||||
)
|
||||
return result
|
||||
|
||||
@paddle.no_grad()
|
||||
def extract_vision_features(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
|
||||
"""extract_vision_features"""
|
||||
assert inputs["images"] is not None
|
||||
grid_thw = inputs["grid_thw"]
|
||||
|
||||
images = inputs["images"].cast("float32")
|
||||
images = self.image_preprocess.rescale_factor * images - self.image_preprocess.image_mean_tensor
|
||||
images = images / self.image_preprocess.image_std_tensor
|
||||
images = images.cast("bfloat16")
|
||||
|
||||
token_type_ids = inputs["token_type_ids"]
|
||||
token_type_ids_w_video = token_type_ids
|
||||
input_ids = inputs["input_ids"]
|
||||
# convert to img patch id
|
||||
# TODO(lulinjun): may need to check model_config and model_cfg
|
||||
image_mask = input_ids == self.model_config.im_patch_id
|
||||
image_type_ids = inputs["image_type_ids"]
|
||||
with paddle.amp.auto_cast(
|
||||
True,
|
||||
custom_black_list=self.amp_black,
|
||||
custom_white_list=self.amp_white,
|
||||
level="O2",
|
||||
dtype=self.parallel_config.dtype,
|
||||
):
|
||||
image_features = self.model.vision_model.extract_feature(
|
||||
images, grid_thw)
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
S, C = image_features.shape
|
||||
image_features = image_features.reshape(
|
||||
[-1, C * self.model_config.spatial_conv_size**2])
|
||||
image_features = ScatterOp.apply(image_features,
|
||||
axis=-1) # mp 切 Fea
|
||||
image_features = image_features.reshape([S, -1])
|
||||
image_features = self.model.resampler_model(
|
||||
image_features,
|
||||
image_mask,
|
||||
token_type_ids_w_video,
|
||||
image_type_ids,
|
||||
grid_thw,
|
||||
)
|
||||
return image_features
|
||||
|
||||
@paddle.no_grad()
|
||||
def prepare_rope3d(self, position_ids: paddle.Tensor, max_len: int) -> paddle.Tensor:
|
||||
"""prepare_rope3d"""
|
||||
|
||||
prefix_max_position_ids = paddle.max(position_ids) + 1
|
||||
dec_pos_ids = paddle.tile(
|
||||
paddle.arange(max_len,
|
||||
dtype="int64").unsqueeze(0).unsqueeze(-1), [1, 1, 3])
|
||||
dec_pos_ids = dec_pos_ids + prefix_max_position_ids
|
||||
position_ids_3d_real = paddle.concat([position_ids, dec_pos_ids],
|
||||
axis=1)
|
||||
|
||||
rope_emb = get_rope_3d(
|
||||
position_ids=position_ids_3d_real,
|
||||
rotary_dim=self.model_config.head_dim,
|
||||
paritial_rotary_factor=1.0,
|
||||
base=self.model_config.rope_theta,
|
||||
max_position=self.parallel_config.max_model_len,
|
||||
freq_allocation=self.model_config.freq_allocation,
|
||||
)
|
||||
return rope_emb
|
||||
|
@@ -201,6 +201,27 @@ class ModelOutputData:
|
||||
"""
|
||||
accept_num: paddle.Tensor
|
||||
|
||||
"""
|
||||
vl model enable to think
|
||||
"""
|
||||
enable_thinking: paddle.Tensor = None
|
||||
|
||||
"""
|
||||
vl model think end id
|
||||
"""
|
||||
think_end_id: int = -1
|
||||
|
||||
"""
|
||||
vl model need to think
|
||||
"""
|
||||
need_think_end: paddle.Tensor = None
|
||||
|
||||
"""
|
||||
vl model reasoning index
|
||||
"""
|
||||
reasoning_index: paddle.Tensor = None
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelRunnerOutput:
|
||||
|
@@ -1,842 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
from fastdeploy.config import ModelConfig
|
||||
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
||||
from fastdeploy.input.mm_processor import DataProcessor
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.attention import get_attention_backend
|
||||
from fastdeploy.model_executor.layers.rotary_embedding import get_rope_3d
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import \
|
||||
ScatterOp
|
||||
from fastdeploy.platforms import current_platform
|
||||
from fastdeploy.worker.output import SamplerOutput
|
||||
from fastdeploy.worker.utils import check_safetensors_model
|
||||
from fastdeploy.worker.vl_model_runner_base import VLModelRunnerBase
|
||||
|
||||
if current_platform.is_cuda() and current_platform.available():
|
||||
from fastdeploy.model_executor.layers.utils import (
|
||||
remove_padding, speculate_remove_padding)
|
||||
|
||||
from fastdeploy.model_executor.ops.gpu import (save_output, save_output_topk,
|
||||
set_stop_value_multi_ends,
|
||||
set_value_by_flags_and_idx,
|
||||
update_inputs)
|
||||
|
||||
|
||||
class GPUVLModelRunner(VLModelRunnerBase):
|
||||
"""
|
||||
The GPUVLModelRunner class for vision-language tasks on GPU.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ModelConfig,
|
||||
args: argparse.Namespace,
|
||||
nranks: int,
|
||||
rank: int,
|
||||
) -> None:
|
||||
"""
|
||||
GPUVLModelRunner init
|
||||
"""
|
||||
self.nranks = nranks
|
||||
self.rank = rank
|
||||
|
||||
hcg = fleet.get_hybrid_communicate_group()
|
||||
self.tensor_parallel_degree = max(hcg.get_model_parallel_world_size(),
|
||||
1)
|
||||
self.tensor_parallel_rank = hcg.get_model_parallel_rank()
|
||||
self.mp_src_rank = hcg.get_model_parallel_group_src_rank()
|
||||
self.mp_group = hcg.get_model_parallel_group()
|
||||
self.is_safetensors_model = check_safetensors_model(
|
||||
args.model_name_or_path)
|
||||
self.enable_logprob = args.enable_logprob
|
||||
|
||||
model_path = os.path.dirname(args.model_name_or_path)
|
||||
args.llm_model_name_or_path = args.model_name_or_path
|
||||
if not self.is_safetensors_model:
|
||||
args.tokenizer = args.image_preprocessor = model_path
|
||||
else:
|
||||
args.tokenizer = args.image_preprocessor = args.model_name_or_path
|
||||
args.vision_model_name_or_path = os.path.join(
|
||||
model_path, "DFNRopeVisionTransformer")
|
||||
|
||||
self.amp_black = [
|
||||
"reduce_sum",
|
||||
"c_softmax_with_cross_entropy",
|
||||
"elementwise_div",
|
||||
"sin",
|
||||
"cos",
|
||||
"sort",
|
||||
"multinomial",
|
||||
]
|
||||
self.amp_white = [
|
||||
"lookup_table",
|
||||
"lookup_table_v2",
|
||||
"flash_attn",
|
||||
"matmul",
|
||||
"matmul_v2",
|
||||
"fused_gemm_epilogue",
|
||||
]
|
||||
|
||||
super().__init__(config, args)
|
||||
self.init_extra_input(config, args)
|
||||
|
||||
self._reset_paddle_env()
|
||||
|
||||
self.sampler = Sampler()
|
||||
|
||||
def _reset_paddle_env(self):
|
||||
pass
|
||||
|
||||
def update_chunked_prefill(self, tasks: list[any]) -> None:
|
||||
"""
|
||||
update chunked prefill
|
||||
"""
|
||||
if not self.args.enable_chunked_prefill:
|
||||
return
|
||||
|
||||
for task in tasks:
|
||||
if task.chunk_idx > len(task.prefill_chunk_info):
|
||||
continue
|
||||
|
||||
idx = task.idx
|
||||
if task.chunk_idx == len(task.prefill_chunk_info):
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = 1
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx +
|
||||
1] = task.start_idx
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 1
|
||||
else:
|
||||
inputs = self._preprocess_task(
|
||||
task.prefill_chunk_info[task.chunk_idx])
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs[
|
||||
"image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
|
||||
token_chunk_size = inputs["input_ids"].shape[1]
|
||||
self.share_inputs["input_ids"][
|
||||
idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx +
|
||||
1] = task.start_idx
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
|
||||
task.start_idx += token_chunk_size
|
||||
task.chunk_idx += 1
|
||||
|
||||
def _init_image_preprocess(self, vision_config) -> None:
|
||||
processor = DataProcessor(
|
||||
tokenizer_name=self.args.tokenizer,
|
||||
image_preprocessor_name=str(self.args.image_preprocessor),
|
||||
)
|
||||
processor.eval()
|
||||
image_preprocess = processor.image_preprocessor
|
||||
image_preprocess.image_mean_tensor = paddle.to_tensor(
|
||||
image_preprocess.image_mean, dtype="float32"
|
||||
).reshape([1, 3, 1, 1])
|
||||
image_preprocess.image_std_tensor = paddle.to_tensor(
|
||||
image_preprocess.image_std, dtype="float32"
|
||||
).reshape([1, 3, 1, 1])
|
||||
image_preprocess.rescale_factor = paddle.to_tensor(
|
||||
image_preprocess.rescale_factor, dtype="float32"
|
||||
)
|
||||
image_preprocess.image_mean_tensor = (
|
||||
image_preprocess.image_mean_tensor.squeeze(
|
||||
[-2, -1]
|
||||
).repeat_interleave(vision_config.patch_size**2 * 1, -1)
|
||||
)
|
||||
image_preprocess.image_std_tensor = (
|
||||
image_preprocess.image_std_tensor.squeeze(
|
||||
[-2, -1]
|
||||
).repeat_interleave(vision_config.patch_size**2 * 1, -1)
|
||||
)
|
||||
return image_preprocess
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
model_name: str,
|
||||
dynamic_load_weight: int = 0,
|
||||
) -> None:
|
||||
"""
|
||||
Load the model from the given model name.
|
||||
"""
|
||||
|
||||
vocab_file_names = [
|
||||
"tokenizer.model", "spm.model", "ernie_token_100k.model"
|
||||
]
|
||||
for i in range(len(vocab_file_names)):
|
||||
if os.path.exists(
|
||||
os.path.join(self.args.tokenizer, vocab_file_names[i])):
|
||||
ErnieBotTokenizer.resource_files_names[
|
||||
"vocab_file"] = vocab_file_names[i]
|
||||
break
|
||||
|
||||
tokenizer = ErnieBotTokenizer.from_pretrained(
|
||||
self.args.tokenizer,
|
||||
model_max_length=self.args.max_model_len,
|
||||
padding_side="right",
|
||||
use_fast=False,
|
||||
)
|
||||
tokenizer.ignored_index = -100
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.unk_token
|
||||
|
||||
self.dtype = self.args.dtype
|
||||
paddle.set_default_dtype(self.dtype)
|
||||
|
||||
from fastdeploy.worker.worker_process import initialize_fd_config
|
||||
|
||||
fd_config = initialize_fd_config(
|
||||
self.args, self.tensor_parallel_degree, self.tensor_parallel_rank
|
||||
)
|
||||
fd_config.model_config.tensor_parallel_degree=self.tensor_parallel_degree
|
||||
fd_config.model_config.tensor_parallel_rank=self.tensor_parallel_rank
|
||||
fd_config.model_config.moe_group="dummy"
|
||||
fd_config.parallel_config.column_cut = False
|
||||
vision_config = fd_config.model_config.vision_config
|
||||
vision_config.attn_sep = False
|
||||
vision_config.dtype = "bfloat16"
|
||||
vision_config.tensor_parallel_degree = self.tensor_parallel_degree
|
||||
vision_config.tensor_parallel_rank = self.tensor_parallel_rank
|
||||
fd_config.model_config.pixel_hidden_size = vision_config.hidden_size
|
||||
fd_config.model_config.im_patch_id = tokenizer.get_vocab()[
|
||||
"<|IMAGE_PLACEHOLDER|>"
|
||||
]
|
||||
fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
|
||||
fd_config.model_config.max_text_id = fd_config.model_config.im_patch_id
|
||||
fd_config.model_config.sequence_parallel = False
|
||||
self.fd_config = fd_config
|
||||
self.model_cfg = self.fd_config.model_config
|
||||
self.image_preprocess = self._init_image_preprocess(
|
||||
self.fd_config.model_config.vision_config
|
||||
)
|
||||
from fastdeploy.model_executor.model_loader import \
|
||||
get_model_from_loader
|
||||
|
||||
self.model = get_model_from_loader(self.fd_config)
|
||||
attn_backend_cls = get_attention_backend()
|
||||
num_heads = self.fd_config.model_config.num_attention_heads // \
|
||||
self.fd_config.parallel_config.tensor_parallel_size
|
||||
self.fd_config.model_config.kv_num_heads = int(
|
||||
self.fd_config.model_config.num_key_value_heads
|
||||
) // self.fd_config.parallel_config.tensor_parallel_size
|
||||
head_dim = self.fd_config.model_config.head_dim
|
||||
self.attn_backend = attn_backend_cls(
|
||||
self.fd_config,
|
||||
kv_num_heads=self.fd_config.model_config.kv_num_heads,
|
||||
num_heads=num_heads,
|
||||
head_dim=head_dim)
|
||||
self._init_kvcache()
|
||||
|
||||
def init_extra_input(self, config: ModelConfig, args: argparse.Namespace) -> None:
|
||||
"""
|
||||
Initialize extra input tensors.
|
||||
"""
|
||||
head_dim = self.model_cfg.head_dim
|
||||
self.share_inputs.update({
|
||||
"rope_emb":
|
||||
paddle.full(shape=[
|
||||
args.max_num_seqs, 2, 1, self.max_length, 1, head_dim // 2
|
||||
],
|
||||
fill_value=0,
|
||||
dtype="float32")
|
||||
})
|
||||
self.share_inputs.update({"image_features": None})
|
||||
self.share_inputs.update({
|
||||
"need_think_end":
|
||||
paddle.full(shape=[args.max_num_seqs, 1],
|
||||
fill_value=0,
|
||||
dtype="int32")
|
||||
})
|
||||
self.share_inputs.update({
|
||||
"enable_thinking":
|
||||
paddle.full(shape=[1], fill_value=True, dtype="bool")
|
||||
})
|
||||
self.share_inputs.update({
|
||||
"reasoning_index":
|
||||
paddle.full(shape=[args.max_num_seqs, 1],
|
||||
fill_value=0,
|
||||
dtype="int32")
|
||||
})
|
||||
|
||||
def init_rotary_position_embedding(self, max_model_len: int) -> None:
|
||||
"""
|
||||
Init rotary position embedding
|
||||
"""
|
||||
pass
|
||||
|
||||
def _init_kvcache(self):
|
||||
"""
|
||||
Init kv cache
|
||||
"""
|
||||
cache_kvs = {}
|
||||
total_block_num = self.num_gpu_blocks
|
||||
num_layers = self.model_cfg.num_hidden_layers
|
||||
|
||||
kv_num_head = self.model_cfg.num_key_value_heads if self.model_cfg.num_key_value_heads != -1 else self.model_cfg.num_attention_heads
|
||||
|
||||
kv_num_head = kv_num_head // self.tensor_parallel_degree
|
||||
self.model_cfg.kv_num_head = kv_num_head
|
||||
|
||||
for i in range(num_layers):
|
||||
cache_type = self.args.dtype
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=[
|
||||
total_block_num,
|
||||
kv_num_head,
|
||||
self.args.block_size,
|
||||
self.model_cfg.head_dim,
|
||||
],
|
||||
fill_value=0,
|
||||
dtype=cache_type,
|
||||
)
|
||||
cache_kvs["value_caches_{}".format(i)] = paddle.full(
|
||||
shape=[
|
||||
total_block_num,
|
||||
kv_num_head,
|
||||
self.args.block_size,
|
||||
self.model_cfg.head_dim,
|
||||
],
|
||||
fill_value=0,
|
||||
dtype=cache_type,
|
||||
)
|
||||
|
||||
self.share_inputs["caches"] = list(cache_kvs.values())
|
||||
for value in cache_kvs.values():
|
||||
del value
|
||||
paddle.device.cuda.empty_cache()
|
||||
|
||||
def clear_parameters(self, pid: int) -> None:
|
||||
""" clear_parameters """
|
||||
if "caches" in self.share_inputs:
|
||||
self.model.clear_parameters(pid)
|
||||
del self.share_inputs["caches"]
|
||||
paddle.device.cuda.empty_cache()
|
||||
self.model.log_memory_usage("clear all memory")
|
||||
|
||||
def update_parameters(self, pid: int) -> None:
|
||||
""" update_parameters """
|
||||
if "caches" not in self.share_inputs:
|
||||
self.model.update_parameters(pid)
|
||||
self._init_kvcache()
|
||||
self.model.log_memory_usage("update all memory")
|
||||
|
||||
@paddle.no_grad()
|
||||
def extract_vision_features(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
|
||||
"""extract_vision_features"""
|
||||
assert inputs["images"] is not None
|
||||
grid_thw = inputs["grid_thw"]
|
||||
|
||||
images = inputs["images"].cast("float32")
|
||||
images = self.image_preprocess.rescale_factor * images - self.image_preprocess.image_mean_tensor
|
||||
images = images / self.image_preprocess.image_std_tensor
|
||||
images = images.cast("bfloat16")
|
||||
|
||||
token_type_ids = inputs["token_type_ids"]
|
||||
token_type_ids_w_video = token_type_ids
|
||||
input_ids = inputs["input_ids"]
|
||||
# convert to img patch id
|
||||
image_mask = input_ids == self.model_cfg.im_patch_id
|
||||
image_type_ids = inputs["image_type_ids"]
|
||||
with paddle.amp.auto_cast(
|
||||
True,
|
||||
custom_black_list=self.amp_black,
|
||||
custom_white_list=self.amp_white,
|
||||
level="O2",
|
||||
dtype=self.dtype,
|
||||
):
|
||||
image_features = self.model.vision_model.extract_feature(
|
||||
images, grid_thw)
|
||||
if self.tensor_parallel_degree > 1:
|
||||
S, C = image_features.shape
|
||||
image_features = image_features.reshape(
|
||||
[-1, C * self.model_cfg.spatial_conv_size**2])
|
||||
image_features = ScatterOp.apply(image_features,
|
||||
axis=-1) # mp 切 Fea
|
||||
image_features = image_features.reshape([S, -1])
|
||||
image_features = self.model.resampler_model(
|
||||
image_features,
|
||||
image_mask,
|
||||
token_type_ids_w_video,
|
||||
image_type_ids,
|
||||
grid_thw,
|
||||
)
|
||||
return image_features
|
||||
|
||||
@paddle.no_grad()
|
||||
def prepare_rope3d(self, position_ids: paddle.Tensor, **kwargs) -> paddle.Tensor:
|
||||
"""prepare_rope3d"""
|
||||
|
||||
prefix_max_position_ids = paddle.max(position_ids) + 1
|
||||
dec_pos_ids = paddle.tile(
|
||||
paddle.arange(kwargs["max_length"],
|
||||
dtype="int64").unsqueeze(0).unsqueeze(-1), [1, 1, 3])
|
||||
dec_pos_ids = dec_pos_ids + prefix_max_position_ids
|
||||
position_ids_3d_real = paddle.concat([position_ids, dec_pos_ids],
|
||||
axis=1)
|
||||
|
||||
rope_emb = get_rope_3d(
|
||||
position_ids=position_ids_3d_real,
|
||||
rotary_dim=self.model_cfg.head_dim,
|
||||
paritial_rotary_factor=1.0,
|
||||
base=self.model_cfg.rope_theta,
|
||||
max_position=self.args.max_model_len,
|
||||
freq_allocation=self.model_cfg.freq_allocation,
|
||||
)
|
||||
return rope_emb
|
||||
|
||||
def prefill_finished(self):
|
||||
"""
|
||||
Verify prefill operation completion
|
||||
"""
|
||||
prefill_statue = (self.share_inputs["seq_lens_this_time"] != 0) & (
|
||||
self.share_inputs["seq_lens_this_time"] != 1)
|
||||
return not paddle.any(prefill_statue).numpy()
|
||||
|
||||
def dy_input_preprocess(self, tasks: list[any]) -> None:
|
||||
"""
|
||||
dynamic insertion
|
||||
"""
|
||||
|
||||
def get_numeric_value(task, key, default_value):
|
||||
if task.get(key, None) is not None:
|
||||
return task.get(key)
|
||||
else:
|
||||
return default_value
|
||||
|
||||
for i in range(len(tasks)):
|
||||
task = tasks[i]
|
||||
idx = task.idx
|
||||
|
||||
kwargs = {
|
||||
"max_length":
|
||||
get_numeric_value(task, "max_tokens", 2048),
|
||||
"top_p":
|
||||
get_numeric_value(task, "top_p", 0.8),
|
||||
"temperature":
|
||||
get_numeric_value(task, "temperature", 0.2),
|
||||
"top_k":
|
||||
get_numeric_value(task, "top_k", 0),
|
||||
"penalty_score":
|
||||
get_numeric_value(task, "repetition_penalty", 1.0),
|
||||
"frequency_score":
|
||||
get_numeric_value(task, "frequency_penalty", 0.0),
|
||||
"presence_score":
|
||||
get_numeric_value(task, "presence_penalty", 0.0),
|
||||
"decode_strategy":
|
||||
"sampling",
|
||||
"pad_token_id":
|
||||
self.args.pad_token_id,
|
||||
"enable_thinking":
|
||||
get_numeric_value(task, "enable_thinking", True),
|
||||
"reasoning_max_tokens":
|
||||
get_numeric_value(task, "reasoning_max_tokens", 2048),
|
||||
}
|
||||
|
||||
if self.args.enable_chunked_prefill:
|
||||
task.set("chunk_idx", 1)
|
||||
inputs = self._preprocess_task(task.prefill_chunk_info[0])
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs[
|
||||
"image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
if task.multimodal_inputs["position_ids"] is not None:
|
||||
position_ids = paddle.to_tensor(
|
||||
task.multimodal_inputs["position_ids"],
|
||||
dtype="int64").unsqueeze([0])
|
||||
else:
|
||||
position_ids = None
|
||||
|
||||
token_chunk_size = inputs["input_ids"].shape[1]
|
||||
task.set("start_idx", token_chunk_size)
|
||||
self.share_inputs["input_ids"][
|
||||
idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_encoder"][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["step_seq_lens_encoder"][
|
||||
idx:idx + 1] = token_chunk_size
|
||||
else:
|
||||
inputs = self._preprocess_task(task.multimodal_inputs)
|
||||
if inputs.get("images") is not None:
|
||||
self.share_inputs[
|
||||
"image_features"] = self.extract_vision_features(
|
||||
inputs)
|
||||
else:
|
||||
# Compatible with the situation that lacks images and videos
|
||||
self.share_inputs["image_features"] = None
|
||||
position_ids = inputs["position_ids"]
|
||||
|
||||
length = inputs["input_ids"].shape[1]
|
||||
self.share_inputs["input_ids"][
|
||||
idx:idx + 1, :length] = inputs["input_ids"]
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = length
|
||||
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx:idx +
|
||||
1] = length
|
||||
|
||||
# force </think>
|
||||
self.share_inputs["enable_thinking"][:] = kwargs["enable_thinking"]
|
||||
self.share_inputs["need_think_end"][
|
||||
idx:idx + 1, :] = 1 if kwargs["enable_thinking"] else 0
|
||||
|
||||
self.share_inputs["reasoning_index"][
|
||||
idx:idx + 1, :] = kwargs["reasoning_max_tokens"]
|
||||
|
||||
self.share_inputs["rope_emb"][idx:idx +
|
||||
1, :] = self.prepare_rope3d(
|
||||
position_ids, **kwargs)
|
||||
|
||||
self.share_inputs["top_p"][idx:idx + 1] = kwargs["top_p"]
|
||||
self.share_inputs["temperature"][idx:idx +
|
||||
1] = kwargs["temperature"]
|
||||
self.share_inputs["eos_token_id"][:] = np.array(
|
||||
task.eos_token_ids).astype("int64").reshape(-1, 1)
|
||||
self.share_inputs["penalty_score"][idx:idx +
|
||||
1] = kwargs["penalty_score"]
|
||||
self.share_inputs["frequency_score"][idx:idx +
|
||||
1] = kwargs["frequency_score"]
|
||||
self.share_inputs["presence_score"][idx:idx +
|
||||
1] = kwargs["presence_score"]
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["min_dec_len"][idx:idx + 1] = 1
|
||||
self.share_inputs["max_dec_len"][idx:idx +
|
||||
1] = kwargs["max_length"]
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
self.share_inputs["pre_ids"][idx:idx + 1] = -1
|
||||
encoder_block_num = len(task.get("block_tables"))
|
||||
self.share_inputs["encoder_block_lens"][idx:idx +
|
||||
1] = encoder_block_num
|
||||
self.share_inputs["block_tables"][idx:idx + 1, :] = -1
|
||||
self.share_inputs["block_tables"][
|
||||
idx:idx + 1, :encoder_block_num] = np.array(task.block_tables,
|
||||
dtype="int32")
|
||||
|
||||
def pre_process(self) -> None:
|
||||
"""
|
||||
pre_process
|
||||
"""
|
||||
if current_platform.is_cuda():
|
||||
if self.args.speculative_method is not None:
|
||||
(
|
||||
ids_remove_padding,
|
||||
padding_offset,
|
||||
cum_offsets,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
) = speculate_remove_padding(
|
||||
max_len=self.args.max_model_len,
|
||||
input_ids=self.share_inputs["input_ids"],
|
||||
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
||||
draft_tokens=self.share_inputs["draft_tokens"],
|
||||
seq_lens_encoder=self.share_inputs["seq_lens_encoder"])
|
||||
else:
|
||||
(
|
||||
ids_remove_padding,
|
||||
padding_offset,
|
||||
cum_offsets,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
) = remove_padding(
|
||||
max_len=self.args.max_model_len,
|
||||
input_ids=self.share_inputs["input_ids"],
|
||||
seq_lens_this_time=self.share_inputs["seq_lens_this_time"])
|
||||
self.share_inputs["ids_remove_padding"] = ids_remove_padding
|
||||
self.share_inputs["padding_offset"] = padding_offset
|
||||
self.share_inputs["cum_offsets"] = cum_offsets
|
||||
self.share_inputs["cu_seqlens_q"] = cu_seqlens_q
|
||||
self.share_inputs["cu_seqlens_k"] = cu_seqlens_k
|
||||
self.share_inputs["decoder_batch_ids"] = paddle.full(
|
||||
[self.fd_config.parallel_config.max_num_seqs, 1], 0, dtype='int32')
|
||||
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full(
|
||||
[self.fd_config.parallel_config.max_num_seqs, 1], 0, dtype='int32')
|
||||
# initialize_forward_meta
|
||||
self.forward_meta = ForwardMeta(
|
||||
input_ids=self.share_inputs["input_ids"],
|
||||
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
||||
rotary_embs=self.share_inputs["rope_emb"],
|
||||
attn_backend=self.attn_backend,
|
||||
decoder_batch_ids=self.share_inputs["decoder_batch_ids"],
|
||||
decoder_tile_ids_per_batch=self.share_inputs["decoder_tile_ids_per_batch"],
|
||||
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
|
||||
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
|
||||
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
||||
cum_offsets=self.share_inputs["cum_offsets"],
|
||||
padding_offset=self.share_inputs["padding_offset"],
|
||||
cu_seqlens_q=self.share_inputs["cu_seqlens_q"],
|
||||
cu_seqlens_k=self.share_inputs["cu_seqlens_k"],
|
||||
block_tables=self.share_inputs["block_tables"],
|
||||
caches=self.share_inputs["caches"]
|
||||
)
|
||||
self.attn_backend.init_attention_metadata(self.forward_meta)
|
||||
|
||||
self.sampling_metadata = SamplingMetadata(
|
||||
temperature=self.share_inputs["temperature"],
|
||||
top_p=self.share_inputs["top_p"],
|
||||
step_idx=self.share_inputs["step_idx"],
|
||||
pre_token_ids=self.share_inputs["pre_ids"],
|
||||
frequency_penalties=self.share_inputs["frequency_score"],
|
||||
presence_penalties=self.share_inputs["presence_score"],
|
||||
repetition_penalties=self.share_inputs["penalty_score"],
|
||||
min_dec_lens=self.share_inputs["min_dec_len"],
|
||||
bad_words_token_ids=self.share_inputs["bad_tokens"],
|
||||
eos_token_ids=self.share_inputs["eos_token_id"],
|
||||
max_num_logprobs=20 if self.enable_logprob else None,
|
||||
)
|
||||
|
||||
def generate(self) -> None:
|
||||
"""
|
||||
generate
|
||||
"""
|
||||
self.pre_process()
|
||||
hiddden_states = self.model(self.share_inputs["ids_remove_padding"],
|
||||
self.share_inputs["image_features"],
|
||||
self.forward_meta)
|
||||
logits = self.model.compute_logits(hiddden_states)
|
||||
set_value_by_flags_and_idx(
|
||||
self.share_inputs["pre_ids"],
|
||||
self.share_inputs["input_ids"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
self.share_inputs["seq_lens_encoder"],
|
||||
self.share_inputs["seq_lens_decoder"],
|
||||
self.share_inputs["step_idx"],
|
||||
self.share_inputs["stop_flags"],
|
||||
)
|
||||
# sampler & save_output
|
||||
sampler_output = self.sampler(logits, self.sampling_metadata)
|
||||
if self.fd_config.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
self.post_process(sampler_output)
|
||||
|
||||
def post_process(self, sampler_output: SamplerOutput) -> None:
|
||||
"""
|
||||
post_process
|
||||
"""
|
||||
if self.share_inputs["enable_thinking"]:
|
||||
exists_think_end = sampler_output.sampled_token_ids == self.model_cfg.think_end_id
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
exists_think_end,
|
||||
self.share_inputs["need_think_end"] - 1,
|
||||
self.share_inputs["need_think_end"],
|
||||
), self.share_inputs["need_think_end"])
|
||||
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
self.share_inputs["need_think_end"].cast("bool"),
|
||||
self.share_inputs["reasoning_index"] - 1,
|
||||
self.share_inputs["reasoning_index"],
|
||||
), self.share_inputs["reasoning_index"])
|
||||
|
||||
stop_wo_think = (
|
||||
(sampler_output.sampled_token_ids == self.share_inputs["eos_token_id"]) |
|
||||
(self.share_inputs["reasoning_index"] == 0)) & (
|
||||
self.share_inputs["need_think_end"] > 0)
|
||||
sampler_output.sampled_token_ids = paddle.where(stop_wo_think,
|
||||
self.model_cfg.think_end_id,
|
||||
sampler_output.sampled_token_ids)
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
stop_wo_think,
|
||||
self.share_inputs["need_think_end"] - 1,
|
||||
self.share_inputs["need_think_end"],
|
||||
), self.share_inputs["need_think_end"])
|
||||
paddle.assign(
|
||||
paddle.where(
|
||||
self.share_inputs["stop_flags"],
|
||||
self.share_inputs["step_idx"],
|
||||
self.share_inputs["step_idx"] + 1,
|
||||
),
|
||||
self.share_inputs["step_idx"],
|
||||
)
|
||||
length_cond = paddle.greater_equal(self.share_inputs["step_idx"],
|
||||
self.share_inputs["max_dec_len"])
|
||||
paddle.assign(
|
||||
paddle.logical_or(self.share_inputs["stop_flags"], length_cond),
|
||||
self.share_inputs["stop_flags"],
|
||||
)
|
||||
|
||||
set_stop_value_multi_ends(
|
||||
sampler_output.sampled_token_ids,
|
||||
self.share_inputs["stop_flags"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
self.share_inputs["eos_token_id"],
|
||||
self.share_inputs["next_tokens"],
|
||||
False,
|
||||
) # multi ends
|
||||
# update inputs
|
||||
update_inputs(
|
||||
self.share_inputs["stop_flags"],
|
||||
self.share_inputs["not_need_stop"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
self.share_inputs["seq_lens_encoder"],
|
||||
self.share_inputs["seq_lens_decoder"],
|
||||
self.share_inputs["input_ids"],
|
||||
self.share_inputs["stop_nums"],
|
||||
sampler_output.sampled_token_ids,
|
||||
self.share_inputs["is_block_step"],
|
||||
)
|
||||
if sampler_output.logprobs_tensors is None:
|
||||
save_output(
|
||||
sampler_output.sampled_token_ids,
|
||||
self.share_inputs["not_need_stop"],
|
||||
self.rank,
|
||||
False, # use_ep
|
||||
)
|
||||
else:
|
||||
save_output_topk(
|
||||
sampler_output.sampled_token_ids,
|
||||
sampler_output.logprobs_tensors.logprob_token_ids,
|
||||
sampler_output.logprobs_tensors.logprobs,
|
||||
sampler_output.logprobs_tensors.selected_token_ranks,
|
||||
self.share_inputs["not_need_stop"],
|
||||
self.rank,
|
||||
)
|
||||
|
||||
def _cal_theortical_kvcache(self):
|
||||
"""
|
||||
Calculate the size of kvcache for computational theory
|
||||
"""
|
||||
num_layers = self.model_cfg.num_hidden_layers
|
||||
byte_of_cache = 2
|
||||
# support c8 c4
|
||||
|
||||
hidden_dim = self.model_cfg.head_dim * self.model_cfg.kv_num_head
|
||||
theoretical_kv_cache_memory = (2 * byte_of_cache *
|
||||
self.args.block_size * num_layers *
|
||||
hidden_dim)
|
||||
return theoretical_kv_cache_memory
|
||||
|
||||
def _update_share_input_block_num(self):
|
||||
"""
|
||||
Update share_inputs['block_tables'] and share_inputs['free_list']
|
||||
"""
|
||||
num_gpu_blocks = self.num_gpu_blocks
|
||||
|
||||
del self.share_inputs["caches"]
|
||||
self._init_kvcache()
|
||||
|
||||
del self.share_inputs["block_tables"]
|
||||
self.share_inputs["block_tables"] = paddle.full(
|
||||
[self.args.max_num_seqs, num_gpu_blocks], -1, dtype="int32")
|
||||
|
||||
# Init free list
|
||||
free_list = list(
|
||||
range(num_gpu_blocks - 1,
|
||||
int(num_gpu_blocks * self.args.kv_cache_ratio) - 1, -1))
|
||||
self.free_list_len = len(free_list)
|
||||
self.share_inputs.update({
|
||||
"free_list":
|
||||
paddle.to_tensor(free_list, dtype="int32"),
|
||||
"free_list_len":
|
||||
paddle.full([1], self.free_list_len, dtype="int32"),
|
||||
})
|
||||
|
||||
def dummy_input(self, num_total_tokens: int, number_of_tasks: int) -> None:
|
||||
"""
|
||||
fake input to profile
|
||||
"""
|
||||
input_length = min(num_total_tokens // number_of_tasks,
|
||||
self.args.max_model_len - 10)
|
||||
block_num = (input_length + self.args.block_size - 1 ) // self.args.block_size \
|
||||
+ self.args.enc_dec_block_num
|
||||
self.share_inputs["free_list"] = paddle.to_tensor([], dtype="int32")
|
||||
self.share_inputs["free_list_len"][0] = 0
|
||||
|
||||
for i in range(number_of_tasks):
|
||||
idx = i
|
||||
self.share_inputs["input_ids"][idx:idx +
|
||||
1, :input_length] = np.array(
|
||||
[5] * input_length)
|
||||
self.share_inputs["eos_token_id"][:] = np.array(
|
||||
[2], dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = input_length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx:idx +
|
||||
1] = input_length
|
||||
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = 10
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
|
||||
self.share_inputs["first_token_ids"][
|
||||
idx:idx + 1] = self.share_inputs["input_ids"][idx:idx + 1, :1]
|
||||
self.share_inputs["ori_seq_lens_encoder"][idx:idx +
|
||||
1] = input_length
|
||||
|
||||
self.share_inputs["infer_seed"][idx:idx + 1] = random.randint(
|
||||
0, 922337203685477580)
|
||||
self.share_inputs["encoder_block_lens"][idx:idx + 1] = block_num
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(idx * block_num, \
|
||||
(idx + 1) * block_num, 1)
|
||||
|
||||
def _preprocess_task(self, one: dict) -> None:
|
||||
"""process batch"""
|
||||
|
||||
input_ids = one["input_ids"][np.newaxis, :]
|
||||
input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
|
||||
token_type_ids = one["token_type_ids"][np.newaxis, :]
|
||||
token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
|
||||
|
||||
if one["images"] is not None:
|
||||
image_type_ids = one["image_type_ids"][np.newaxis, :]
|
||||
images = one["images"]
|
||||
image_type_ids = paddle.to_tensor(image_type_ids,
|
||||
dtype=paddle.int64)
|
||||
images = paddle.to_tensor(images, dtype="uint8")
|
||||
grid_thw = paddle.to_tensor(one["grid_thw"], dtype="int64")
|
||||
else:
|
||||
image_type_ids = None
|
||||
images = None
|
||||
grid_thw = None
|
||||
|
||||
if one["position_ids"] is not None:
|
||||
position_ids = paddle.to_tensor(one["position_ids"],
|
||||
dtype="int64").unsqueeze([0])
|
||||
else:
|
||||
position_ids = None
|
||||
|
||||
result = dict(
|
||||
input_ids=input_ids,
|
||||
image_type_ids=image_type_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
grid_thw=grid_thw,
|
||||
images=images,
|
||||
)
|
||||
return result
|
@@ -1,277 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import paddle
|
||||
import paddle.distributed as dist
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
from fastdeploy.config import ModelConfig
|
||||
from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("worker", "worker.log")
|
||||
|
||||
|
||||
class VLModelRunnerBase(ABC):
|
||||
"""
|
||||
Engine -> (WIP)Executor -> Worker -> VLModelRunnerBase -> Model
|
||||
VLModelRunnerBase interface abstracts the model execution logic that
|
||||
contain input preparation, token generation, and tokenprocessing.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ModelConfig,
|
||||
args: argparse.Namespace,
|
||||
) -> None:
|
||||
"""
|
||||
VLModelRunnerBase init
|
||||
"""
|
||||
|
||||
self.share_inputs = {}
|
||||
self.model_cfg = config
|
||||
self.args = args
|
||||
|
||||
self.init_dist_env()
|
||||
|
||||
self._init_share_inputs(args.max_num_seqs)
|
||||
self.init_rotary_position_embedding(args.max_model_len)
|
||||
self.num_gpu_blocks = args.total_block_num
|
||||
|
||||
self._load_model(config.model_name_or_path, args.dynamic_load_weight)
|
||||
|
||||
def _log_memory_usage(self, context: str = "") -> None:
|
||||
"""Log current GPU memory usage."""
|
||||
max_alloc = paddle.device.cuda.max_memory_allocated() / (1024**3)
|
||||
max_reserved = paddle.device.cuda.max_memory_reserved() / (1024**3)
|
||||
curr_alloc = paddle.device.cuda.memory_allocated() / (1024**3)
|
||||
curr_reserved = paddle.device.cuda.memory_reserved() / (1024**3)
|
||||
|
||||
logger.info(f"GPU memory usage {context}:")
|
||||
logger.warning(f"max_allocated: {max_alloc:.2f}GB\n"
|
||||
f"max_reserved: {max_reserved:.2f}GB\n"
|
||||
f"current_allocated: {curr_alloc:.2f}GB\n"
|
||||
f"current_reserved: {curr_reserved:.2f}GB")
|
||||
|
||||
def init_dist_env(self, seed=20) -> None:
|
||||
"""
|
||||
init distributed env
|
||||
"""
|
||||
self.nranks = dist.get_world_size()
|
||||
strategy = fleet.DistributedStrategy()
|
||||
|
||||
strategy.hybrid_configs = {
|
||||
"dp_degree": 1,
|
||||
"mp_degree": self.nranks,
|
||||
"pp_degree": 1,
|
||||
"sharding_degree": 1,
|
||||
}
|
||||
|
||||
# Set control in tensor parallel
|
||||
strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
|
||||
fleet.init(is_collective=True, strategy=strategy)
|
||||
self.rank = fleet.worker_index()
|
||||
|
||||
def _load_model_init_val(self) -> None:
|
||||
"""
|
||||
initialize model config from config file
|
||||
"""
|
||||
|
||||
def _get_attr(key, default=None):
|
||||
if hasattr(self.model_cfg, key):
|
||||
return getattr(self.model_cfg, key)
|
||||
return default
|
||||
|
||||
self.top_p = _get_attr("top_p", 0.0)
|
||||
self.temperature = _get_attr("temperature", 1.0)
|
||||
self.rope_theta = _get_attr("rope_theta", 10000.0)
|
||||
self.rope_scaling = _get_attr("rope_scaling", None)
|
||||
self.penalty_score = _get_attr("penalty_score", 1.0)
|
||||
self.frequency_score = _get_attr("frequency_score", 0.0)
|
||||
self.presence_score = _get_attr("presence_score", 0.0)
|
||||
self.min_length = _get_attr("min_length", 1)
|
||||
self.max_length = self.args.max_model_len
|
||||
|
||||
def _init_share_inputs(self, max_num_seqs: int) -> None:
|
||||
"""
|
||||
initialize shared inputs
|
||||
"""
|
||||
self._load_model_init_val()
|
||||
|
||||
int64_config = {"dtype": "int64"}
|
||||
int32_config = {"dtype": "int32"}
|
||||
float32_config = {"dtype": "float32"}
|
||||
bool_config = {"dtype": "bool"}
|
||||
|
||||
self.share_inputs.update({
|
||||
"pre_ids":
|
||||
paddle.full([max_num_seqs, self.max_length], -1, **int64_config),
|
||||
"input_ids":
|
||||
paddle.full([max_num_seqs, self.args.max_model_len],
|
||||
self.args.pad_token_id, **int64_config),
|
||||
"eos_token_id":
|
||||
paddle.full([self.args.eos_tokens_lens, 1], 0, **int64_config),
|
||||
"top_p":
|
||||
paddle.full([max_num_seqs, 1], self.top_p, **float32_config),
|
||||
"temperature":
|
||||
paddle.full([max_num_seqs, 1], self.temperature, **float32_config),
|
||||
"penalty_score":
|
||||
paddle.full([max_num_seqs, 1], self.penalty_score,
|
||||
**float32_config),
|
||||
"frequency_score":
|
||||
paddle.full([max_num_seqs, 1], self.frequency_score,
|
||||
**float32_config),
|
||||
"presence_score":
|
||||
paddle.full([max_num_seqs, 1], self.presence_score,
|
||||
**float32_config),
|
||||
"min_dec_len":
|
||||
paddle.full([max_num_seqs, 1], self.min_length, **int64_config),
|
||||
"max_dec_len":
|
||||
paddle.full([max_num_seqs, 1], self.max_length, **int64_config),
|
||||
"min_length":
|
||||
paddle.full([max_num_seqs, 1], self.min_length, **int64_config),
|
||||
"max_length":
|
||||
paddle.full([max_num_seqs, 1], self.max_length, **int64_config),
|
||||
"seq_lens_this_time":
|
||||
paddle.full(max_num_seqs, 0, **int32_config),
|
||||
"seq_lens_encoder":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"step_seq_lens_encoder":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"step_seq_lens_decoder":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"seq_lens_decoder":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"step_idx":
|
||||
paddle.full([max_num_seqs, 1], 0, **int64_config),
|
||||
"not_need_stop":
|
||||
paddle.full([1], False, **bool_config).cpu(),
|
||||
"stop_flags":
|
||||
paddle.full([max_num_seqs, 1], True, **bool_config),
|
||||
"stop_nums":
|
||||
paddle.full([1], max_num_seqs, **int64_config),
|
||||
"bad_tokens":
|
||||
paddle.full([1], -1, **int64_config),
|
||||
"next_tokens":
|
||||
paddle.full([max_num_seqs, 1], -1, **int64_config),
|
||||
"is_block_step":
|
||||
paddle.full([max_num_seqs], False, **bool_config),
|
||||
"encoder_block_lens":
|
||||
paddle.full([max_num_seqs], 0, **int32_config),
|
||||
"step_block_list":
|
||||
paddle.full([max_num_seqs], -1, **int32_config),
|
||||
"step_lens":
|
||||
paddle.full([1], 0, **int32_config),
|
||||
"recover_block_list":
|
||||
paddle.full([max_num_seqs], -1, **int32_config),
|
||||
"recover_lens":
|
||||
paddle.full([1], 0, **int32_config),
|
||||
"need_block_list":
|
||||
paddle.full([max_num_seqs], -1, **int32_config),
|
||||
"need_block_len":
|
||||
paddle.full([1], 0, **int32_config),
|
||||
"used_list_len":
|
||||
paddle.full([max_num_seqs], 0, **int32_config),
|
||||
"infer_seed":
|
||||
paddle.full([max_num_seqs, 1], 0, **int64_config),
|
||||
"first_token_ids":
|
||||
paddle.full([max_num_seqs, 1], -1, **int64_config),
|
||||
"ori_seq_lens_encoder":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"system_lens":
|
||||
paddle.full([max_num_seqs, 1], 0, **int32_config),
|
||||
"system_ids":
|
||||
paddle.full([max_num_seqs, 1], -1, **int32_config),
|
||||
})
|
||||
|
||||
pre_max_block_num = (
|
||||
self.args.max_model_len + self.args.block_size -
|
||||
1) // self.args.block_size + self.args.enc_dec_block_num
|
||||
self.share_inputs["block_tables"] = paddle.full(
|
||||
[max_num_seqs, pre_max_block_num], -1, **int32_config)
|
||||
|
||||
free_list = list(
|
||||
range(
|
||||
self.args.total_block_num - 1,
|
||||
int(self.args.total_block_num * self.args.kv_cache_ratio) - 1,
|
||||
-1))
|
||||
self.free_list_len = len(free_list)
|
||||
self.share_inputs.update({
|
||||
"free_list":
|
||||
paddle.to_tensor(free_list, dtype="int32"),
|
||||
"free_list_len":
|
||||
paddle.full([1], self.free_list_len, **int32_config),
|
||||
})
|
||||
|
||||
self.share_inputs.update({
|
||||
"stop_seqs_len":
|
||||
paddle.full([self.model_cfg.max_stop_seqs_num], 0, **int32_config),
|
||||
"stop_seqs":
|
||||
paddle.full([
|
||||
self.model_cfg.max_stop_seqs_num,
|
||||
self.model_cfg.stop_seqs_max_len
|
||||
], -1, **int64_config),
|
||||
})
|
||||
|
||||
def update_chunked_prefill(self, tasks: list[any]) -> None:
|
||||
"""
|
||||
update chunked prefill
|
||||
"""
|
||||
if not self.args.enable_chunked_prefill:
|
||||
return
|
||||
|
||||
raise NotImplementedError(
|
||||
"currently chunked_prefill is not supported.")
|
||||
|
||||
def prefill_finished(self):
|
||||
"""
|
||||
Verify prefill operation completion
|
||||
"""
|
||||
return True
|
||||
|
||||
@abstractmethod
|
||||
def init_rotary_position_embedding(self, max_model_len: int) -> None:
|
||||
"""
|
||||
Init rotary position embedding
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def _load_model(
|
||||
self,
|
||||
model_name: str,
|
||||
dynamic_load_weight: int = 0,
|
||||
) -> None:
|
||||
"""
|
||||
Load the model from the given model name.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def _init_kvcache(self):
|
||||
"""
|
||||
Init kv cache
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def dy_input_preprocess(self, tasks: list[any]) -> None:
|
||||
"""
|
||||
dynamic insertion
|
||||
"""
|
||||
raise NotImplementedError
|
@@ -1,540 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import argparse
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.distributed as dist
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
from fastdeploy.engine.config import ModelConfig
|
||||
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
|
||||
from fastdeploy.utils import get_logger, none_or_str
|
||||
from fastdeploy.worker.worker_process import initialize_fd_config, parse_args
|
||||
|
||||
logger = get_logger("worker", "worker.log")
|
||||
|
||||
|
||||
class PrefillTracker:
|
||||
"""
|
||||
Record the prefill time of the request
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
engine_pid: int,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the PrefillTracker.
|
||||
"""
|
||||
super().__init__()
|
||||
self.start_times = defaultdict(float)
|
||||
prefill_time_data = np.zeros([100], dtype=np.float32)
|
||||
self.prefill_time_signal = IPCSignal(name="prefill_time_signal",
|
||||
array=prefill_time_data,
|
||||
dtype=np.float32,
|
||||
suffix=engine_pid,
|
||||
create=False)
|
||||
self.current_index = 0
|
||||
self.executor = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def start_prefill(self, task_idx: int):
|
||||
"""
|
||||
Record the start time of the prefill process for a given task index.
|
||||
|
||||
Args:
|
||||
task_idx (int): The index of the task being prefetched.
|
||||
"""
|
||||
self.start_times[task_idx] = time.time()
|
||||
|
||||
def end_prefill(self, task_idx: int):
|
||||
"""
|
||||
Record the end time of the prefill process for a given task index and
|
||||
asynchronously submit the duration for metric recording.
|
||||
|
||||
Args:
|
||||
task_idx (int): The index of the task being prefetched.
|
||||
"""
|
||||
if task_idx in self.start_times:
|
||||
duration = time.time() - self.start_times[task_idx]
|
||||
# Submit metric recording to the executor for asynchronous execution
|
||||
self.executor.submit(self._record_metrics, duration)
|
||||
del self.start_times[task_idx]
|
||||
|
||||
def _record_metrics(self, duration: float):
|
||||
"""
|
||||
Internal method to record the prefill duration into the signal buffer.
|
||||
Logs the duration and updates a circular buffer of timing metrics.
|
||||
|
||||
Args:
|
||||
duration (float): Time taken for the prefill process in seconds.
|
||||
"""
|
||||
|
||||
self.prefill_time_signal.value[self.current_index] = duration
|
||||
self.current_index = (self.current_index + 1) % len(
|
||||
self.prefill_time_signal.value)
|
||||
|
||||
def __del__(self):
|
||||
"""Clean up resources"""
|
||||
if hasattr(self, 'executor'):
|
||||
self.executor.shutdown(wait=False)
|
||||
|
||||
|
||||
class Worker:
|
||||
"""
|
||||
Engine -> (WIP)Executor -> Worker -> ModelRunner -> Model
|
||||
Worker interface that allows inference framwork to cleanly separate implementations for different harware.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the Worker.
|
||||
"""
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.MAX_INFER_SEED = 9223372036854775806
|
||||
paddle.set_default_dtype(args.dtype)
|
||||
self.device_ids = self.args.device_ids.split(",")
|
||||
self.model_cfg = ModelConfig(args.model_name_or_path)
|
||||
|
||||
from fastdeploy.worker.vl_gpu_model_runner import GPUVLModelRunner
|
||||
|
||||
self.init_dist_env()
|
||||
self.format_print_configuration()
|
||||
self.helper_tensors = {}
|
||||
|
||||
local_rank = self.rank % self.args.tensor_parallel_size
|
||||
self.local_data_parallel_id = self.rank // self.args.tensor_parallel_size
|
||||
|
||||
self.infer_engine = GPUVLModelRunner(config=self.model_cfg,
|
||||
args=self.args,
|
||||
nranks=self.nranks,
|
||||
rank=self.rank)
|
||||
self.prefill_tracker = PrefillTracker(args.engine_pid)
|
||||
|
||||
address = (self.args.pod_ip, self.args.engine_worker_queue_port)
|
||||
self.engine_worker_queue = EngineWorkerQueue(
|
||||
address=address,
|
||||
is_server=False,
|
||||
num_client=self.nranks,
|
||||
client_id=local_rank,
|
||||
local_data_parallel_id=self.local_data_parallel_id)
|
||||
self.init_health()
|
||||
|
||||
def init_dist_env(self, seed=20):
|
||||
"""
|
||||
init distributed env
|
||||
"""
|
||||
|
||||
self.nranks = dist.get_world_size()
|
||||
strategy = fleet.DistributedStrategy()
|
||||
|
||||
strategy.hybrid_configs = {
|
||||
"dp_degree": 1,
|
||||
"mp_degree": self.nranks,
|
||||
"pp_degree": 1,
|
||||
"sharding_degree": 1,
|
||||
}
|
||||
|
||||
# Set control in tensor parallel
|
||||
strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
|
||||
fleet.init(is_collective=True, strategy=strategy)
|
||||
self.rank = fleet.worker_index()
|
||||
|
||||
def init_health(self):
|
||||
"""
|
||||
init health signals
|
||||
"""
|
||||
# To perceive whether each worker process is ready
|
||||
worker_ready_signal_data = np.zeros(shape=[self.nranks],
|
||||
dtype=np.int32)
|
||||
self.worker_ready_signal = IPCSignal(name="worker_ready_signal",
|
||||
array=worker_ready_signal_data,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
self.worker_ready_signal.value[self.rank] = 1
|
||||
|
||||
# To monitor the liveness of worker processes and record each step's timestamp
|
||||
worker_healthy_live_recorded_time_array = np.zeros(shape=[self.nranks],
|
||||
dtype=np.int32)
|
||||
self.worker_healthy_live_signal = IPCSignal(
|
||||
name="worker_healthy_live_signal",
|
||||
array=worker_healthy_live_recorded_time_array,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
|
||||
|
||||
# To perceive whether there is a new task to be processed
|
||||
exist_task_signal_data = np.zeros([1], dtype=np.int32)
|
||||
self.exist_task_signal = IPCSignal(name="exist_task_signal",
|
||||
array=exist_task_signal_data,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
|
||||
# To detect whether there are swapped tasks in the worker
|
||||
exist_swapped_task_signal_data = np.zeros([1], dtype=np.int32)
|
||||
self.exist_swapped_task_signal = IPCSignal(
|
||||
name="exist_swapped_task_signal",
|
||||
array=exist_swapped_task_signal_data,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
|
||||
model_weights_status = np.zeros([1], dtype=np.int32)
|
||||
self.model_weights_status_signal = IPCSignal(
|
||||
name="model_weights_status",
|
||||
array=model_weights_status,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
|
||||
def format_print_configuration(self):
|
||||
"""
|
||||
print model config
|
||||
"""
|
||||
logger.info("=============== Model Information ==============")
|
||||
for k, v in self.model_cfg.__dict__.items():
|
||||
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
||||
logger.info("=============== Service Configuration ===============")
|
||||
for k, v in vars(self.args).items():
|
||||
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
||||
logger.info("=====================================================\n")
|
||||
|
||||
def step_cuda(self):
|
||||
"""
|
||||
step cuda
|
||||
"""
|
||||
from fastdeploy.model_executor.ops.gpu import (step_reschedule,
|
||||
step_system_cache)
|
||||
|
||||
if self.args.enable_prefix_caching:
|
||||
step_system_cache(
|
||||
self.infer_engine.share_inputs["stop_flags"],
|
||||
self.infer_engine.share_inputs["seq_lens_this_time"],
|
||||
self.infer_engine.share_inputs["step_seq_lens_encoder"],
|
||||
self.infer_engine.share_inputs["step_seq_lens_decoder"],
|
||||
self.infer_engine.share_inputs["seq_lens_encoder"],
|
||||
self.infer_engine.share_inputs["seq_lens_decoder"],
|
||||
self.infer_engine.share_inputs["block_tables"],
|
||||
self.infer_engine.share_inputs["encoder_block_lens"],
|
||||
self.infer_engine.share_inputs["is_block_step"],
|
||||
self.infer_engine.share_inputs["step_block_list"],
|
||||
self.infer_engine.share_inputs["step_lens"],
|
||||
self.infer_engine.share_inputs["recover_block_list"],
|
||||
self.infer_engine.share_inputs["recover_lens"],
|
||||
self.infer_engine.share_inputs["need_block_list"],
|
||||
self.infer_engine.share_inputs["need_block_len"],
|
||||
self.infer_engine.share_inputs["used_list_len"],
|
||||
self.infer_engine.share_inputs["free_list"],
|
||||
self.infer_engine.share_inputs["free_list_len"],
|
||||
self.infer_engine.share_inputs["input_ids"],
|
||||
self.infer_engine.share_inputs["pre_ids"],
|
||||
self.infer_engine.share_inputs["step_idx"],
|
||||
self.infer_engine.share_inputs["next_tokens"],
|
||||
self.infer_engine.share_inputs["first_token_ids"],
|
||||
self.args.block_size, self.args.enc_dec_block_num)
|
||||
|
||||
else:
|
||||
step_reschedule(
|
||||
self.infer_engine.share_inputs["stop_flags"],
|
||||
self.infer_engine.share_inputs["seq_lens_this_time"],
|
||||
self.infer_engine.share_inputs["step_seq_lens_encoder"],
|
||||
self.infer_engine.share_inputs["seq_lens_encoder"],
|
||||
self.infer_engine.share_inputs["seq_lens_decoder"],
|
||||
self.infer_engine.share_inputs["block_tables"],
|
||||
self.infer_engine.share_inputs["encoder_block_lens"],
|
||||
self.infer_engine.share_inputs["is_block_step"],
|
||||
self.infer_engine.share_inputs["step_block_list"],
|
||||
self.infer_engine.share_inputs["step_lens"],
|
||||
self.infer_engine.share_inputs["recover_block_list"],
|
||||
self.infer_engine.share_inputs["recover_lens"],
|
||||
self.infer_engine.share_inputs["need_block_list"],
|
||||
self.infer_engine.share_inputs["need_block_len"],
|
||||
self.infer_engine.share_inputs["used_list_len"],
|
||||
self.infer_engine.share_inputs["free_list"],
|
||||
self.infer_engine.share_inputs["free_list_len"],
|
||||
self.infer_engine.share_inputs["input_ids"],
|
||||
self.infer_engine.share_inputs["pre_ids"],
|
||||
self.infer_engine.share_inputs["step_idx"],
|
||||
self.infer_engine.share_inputs["next_tokens"],
|
||||
self.infer_engine.share_inputs["first_token_ids"],
|
||||
self.args.block_size,
|
||||
self.args.enc_dec_block_num,
|
||||
)
|
||||
|
||||
def check_model_weights_status(self):
|
||||
"""
|
||||
check model weights status
|
||||
"""
|
||||
is_stop = 0
|
||||
while self.model_weights_status_signal.value[0] != 0:
|
||||
if self.model_weights_status_signal.value[0] == 1:
|
||||
logger.info(
|
||||
f"infer engine stopped! start to load new checkpoint... {self.rank}"
|
||||
)
|
||||
self.infer_engine.update_parameters(self.args.engine_pid)
|
||||
elif self.model_weights_status_signal.value[0] == -1:
|
||||
logger.info(
|
||||
f"infer engine stopped! start to clear checkpoint... {self.rank}"
|
||||
)
|
||||
self.infer_engine.clear_parameters(self.args.engine_pid)
|
||||
|
||||
while True:
|
||||
if self.model_weights_status_signal.value[0] == 0:
|
||||
logger.info(f"finished loading new checkpoint {self.rank}")
|
||||
break
|
||||
elif is_stop == 1 or (self.model_weights_status_signal.value[0]
|
||||
== -2 and is_stop == 0):
|
||||
if is_stop == 0:
|
||||
logger.info(
|
||||
f"finished clearing checkpoint {self.rank}")
|
||||
is_stop = 1
|
||||
time.sleep(0.001)
|
||||
break
|
||||
else:
|
||||
time.sleep(0.001)
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
run function, continuously get tasks and do inference.
|
||||
"""
|
||||
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
|
||||
fill_value=4,
|
||||
dtype="int64")
|
||||
|
||||
self.nnode = int((self.nranks + 7) // 8)
|
||||
mp_num_per_node = self.nranks // self.nnode
|
||||
while True:
|
||||
if self.rank == 0:
|
||||
if self.model_weights_status_signal.value[0] != 0:
|
||||
self.exist_task_signal.value[0] = 2
|
||||
else:
|
||||
self.exist_task_signal.value[0] = 0
|
||||
|
||||
if self.nranks > 1:
|
||||
paddle.distributed.barrier()
|
||||
|
||||
if self.exist_task_signal.value[0] == 2:
|
||||
self.check_model_weights_status()
|
||||
|
||||
self.insert_step = False
|
||||
|
||||
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
|
||||
|
||||
if self.rank % mp_num_per_node == 0:
|
||||
if self.engine_worker_queue.num_tasks(
|
||||
) > 0 and self.infer_engine.prefill_finished():
|
||||
if self.nnode > 1:
|
||||
self.engine_worker_queue.read_finish_flag.set(1)
|
||||
else:
|
||||
self.exist_task_signal.value[0] = 1
|
||||
|
||||
if self.nranks > 1:
|
||||
paddle.distributed.barrier()
|
||||
|
||||
if self.exist_task_signal.value[
|
||||
0] == 1 or self.engine_worker_queue.read_finish_flag.get(
|
||||
) == 1:
|
||||
logger.info(f"Rank: {self.rank} Detected new requests.")
|
||||
self.insert_step = True
|
||||
|
||||
tasks, read_finish = self.engine_worker_queue.get_tasks()
|
||||
if read_finish:
|
||||
self.exist_task_signal.value[0] = 0
|
||||
self.engine_worker_queue.read_finish_flag.set(0)
|
||||
|
||||
req_dicts = []
|
||||
for req_dict, bsz in tasks:
|
||||
num_running_requests = int(bsz)
|
||||
|
||||
req_dicts.extend(req_dict)
|
||||
req_ids = [req.request_id for req in req_dicts]
|
||||
logger.info(f"Rank: {self.rank}, num_running_requests: {num_running_requests}, " \
|
||||
f"num_insert_requests: {len(req_dicts)}. {req_ids}")
|
||||
|
||||
self.infer_engine.dy_input_preprocess(req_dicts)
|
||||
for req_dict in req_dicts:
|
||||
if self.infer_engine.share_inputs["seq_lens_this_time"][
|
||||
req_dict.idx] > 1:
|
||||
self.prefill_tracker.start_prefill(req_dict.idx)
|
||||
self.infer_engine.share_inputs["not_need_stop"][0] = True
|
||||
|
||||
if not self.infer_engine.share_inputs["not_need_stop"]:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
|
||||
self.infer_engine.generate()
|
||||
self.infer_engine.share_inputs["infer_seed"].add_(
|
||||
infer_seed_increment)
|
||||
self.infer_engine.share_inputs[
|
||||
"infer_seed"][:] %= self.MAX_INFER_SEED
|
||||
for req_dict in req_dicts:
|
||||
if (self.infer_engine.share_inputs["seq_lens_this_time"][
|
||||
req_dict.idx] == 1
|
||||
and req_dict.idx in self.prefill_tracker.start_times):
|
||||
self.prefill_tracker.end_prefill(req_dict.idx)
|
||||
self.infer_engine.update_chunked_prefill(req_dicts)
|
||||
self.step_cuda()
|
||||
|
||||
def determine_num_available_blocks(self):
|
||||
"""Profiles the peak memory usage of the model to determine how many
|
||||
KV blocks may be allocated without OOMs.
|
||||
|
||||
The engine will first conduct a profiling of the existing memory usage.
|
||||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||||
that can be allocated with the remaining free memory.
|
||||
|
||||
.. tip::
|
||||
You may limit the usage of GPU memory
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
# Profile the memory usage of the model and get the maximum number of
|
||||
# cache blocks that can be allocated with the remaining free memory.
|
||||
start_time = time.time()
|
||||
|
||||
GiB = 1024**3
|
||||
paddle.device.cuda.empty_cache()
|
||||
|
||||
paddle.device.cuda.reset_max_memory_allocated()
|
||||
before_activation_gpu_memory = paddle.device.cuda.max_memory_allocated(
|
||||
) / GiB
|
||||
logger.info(
|
||||
f"before activate gpu memory: {before_activation_gpu_memory} GiB.")
|
||||
|
||||
import gc
|
||||
|
||||
import pynvml
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(
|
||||
int(self.device_ids[self.rank]))
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
total_gpu_memory = meminfo.total / GiB
|
||||
used_gpu_memory = meminfo.used / GiB
|
||||
pynvml.nvmlShutdown()
|
||||
logger.info(f"used gpu memory: {used_gpu_memory} GiB.")
|
||||
|
||||
self.run_profile()
|
||||
current_max_peak_gpu_memory = paddle.device.cuda.max_memory_reserved(
|
||||
) / GiB
|
||||
logger.info(
|
||||
f"current max peak gpu memory: {current_max_peak_gpu_memory} GiB.")
|
||||
per_block_memory_used = self.infer_engine._cal_theortical_kvcache(
|
||||
) / GiB
|
||||
logger.info(f"each kv cache block takes {per_block_memory_used} GiB.")
|
||||
used_cache_gpu_memory = self.args.total_block_num * per_block_memory_used
|
||||
logger.info(f"used cache gpu memory: {used_cache_gpu_memory} GiB.")
|
||||
model_weights_memory = used_gpu_memory - used_cache_gpu_memory
|
||||
paddle_peak_increase = current_max_peak_gpu_memory - before_activation_gpu_memory
|
||||
memory_for_current_instance = total_gpu_memory * self.args.gpu_memory_utilization
|
||||
available_kv_cache_memory = memory_for_current_instance - used_gpu_memory - \
|
||||
paddle_peak_increase + used_cache_gpu_memory
|
||||
|
||||
num_gpu_blocks = max(
|
||||
int(available_kv_cache_memory // per_block_memory_used),
|
||||
self.args.total_block_num)
|
||||
profile_time = time.time() - start_time
|
||||
|
||||
msg = (f"Memory profiling takes {profile_time:.2f} seconds\n"
|
||||
"the current instance can use "
|
||||
"total_gpu_memory "
|
||||
f"({(total_gpu_memory):.2f}GiB)"
|
||||
" x gpu_memory_utilization "
|
||||
f"({self.args.gpu_memory_utilization})"
|
||||
f" = {(memory_for_current_instance):.2f}GiB\n"
|
||||
"model weights take "
|
||||
f"{(model_weights_memory ):.2f}GiB;"
|
||||
" Paddle activation peak memory takes "
|
||||
f"{(paddle_peak_increase):.2f}GiB;"
|
||||
" the rest of the memory reserved for KV Cache is "
|
||||
f"{(available_kv_cache_memory):.2f}GiB.")
|
||||
|
||||
self.infer_engine.record_profile_msg = {
|
||||
"per_block_memory_used": per_block_memory_used,
|
||||
"paddle_peak_increase": paddle_peak_increase,
|
||||
}
|
||||
|
||||
logger.info(msg)
|
||||
# Final cleanup
|
||||
|
||||
get_profile_block_num = np.zeros(shape=[self.nranks], dtype=np.int32)
|
||||
self.get_profile_block_num_signal = IPCSignal(
|
||||
name="get_profile_block_num",
|
||||
array=get_profile_block_num,
|
||||
dtype=np.int32,
|
||||
suffix=self.args.engine_pid,
|
||||
create=False)
|
||||
self.get_profile_block_num_signal.value[self.rank] = int(
|
||||
num_gpu_blocks)
|
||||
while np.any(self.get_profile_block_num_signal.value <= 0):
|
||||
time.sleep(0.01)
|
||||
num_gpu_blocks = self.get_profile_block_num_signal.value.min().item()
|
||||
self.get_profile_block_num_signal.value[self.rank] = int(
|
||||
num_gpu_blocks)
|
||||
logger.info(
|
||||
f"{self.get_profile_block_num_signal.value[self.rank]} GPU KV blocks can be allocated."
|
||||
)
|
||||
self.infer_engine.num_gpu_blocks = num_gpu_blocks
|
||||
self.infer_engine._update_share_input_block_num()
|
||||
|
||||
paddle.device.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
def run_profile(self):
|
||||
"""
|
||||
run profile
|
||||
"""
|
||||
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
|
||||
fill_value=4,
|
||||
dtype="int64")
|
||||
|
||||
self.infer_engine.dummy_input(self.args.max_num_batched_tokens,
|
||||
self.args.max_num_seqs)
|
||||
while True:
|
||||
if self.nranks > 1:
|
||||
paddle.distributed.barrier()
|
||||
self.infer_engine.generate()
|
||||
self.infer_engine.share_inputs["infer_seed"].add_(
|
||||
infer_seed_increment)
|
||||
self.infer_engine.share_inputs[
|
||||
"infer_seed"][:] %= self.MAX_INFER_SEED
|
||||
self.step_cuda()
|
||||
if int((self.infer_engine.share_inputs['seq_lens_this_time']
|
||||
> 0).sum()) == 0:
|
||||
break
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
start worker
|
||||
"""
|
||||
args = parse_args()
|
||||
worker = Worker(args)
|
||||
if args.do_profile:
|
||||
worker.determine_num_available_blocks()
|
||||
worker.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -549,6 +549,10 @@ def parse_args():
|
||||
"'ipc_snapshot': load from disk snapshot of IPC weights, "
|
||||
"'meta': provide RL traing worker, no_weights_load"
|
||||
"'normal':normal load weight")
|
||||
parser.add_argument("--enable_mm",
|
||||
type=str,
|
||||
default="false",
|
||||
help="Whether to use vl")
|
||||
parser.add_argument("--enable_logprob",
|
||||
action='store_true',
|
||||
help="Enable output of token-level log probabilities.")
|
||||
@@ -650,6 +654,8 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
|
||||
"No quantization config found and use original weight and act dtype."
|
||||
)
|
||||
|
||||
# Set VL tag
|
||||
model_config.enable_mm = getattr(args, 'enable_mm', 'false').lower() == 'true'
|
||||
logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}")
|
||||
logger.info(f"- Load strategy: {load_config.load_strategy}")
|
||||
|
||||
|
Reference in New Issue
Block a user