Files
FastDeploy/fastdeploy/model_executor/pre_and_post_process.py
Zero Rains e7bcbbab52 Merge vl execution path into normal execution path (#2829)
* merge vl model into gpu_model runner

Change-Id: I9f4691a3d5f135e8d72b1d58abcd15ef3aa3f2a6

* fix chinese

Change-Id: Ic7405109b984c21e076fb3b01ff6feb571d0119a

* fix the parse parameter

Change-Id: I4cd62ee87c06220af580d91e347145d4394917fe

* fix the bug in online_inference

Change-Id: Idb111bb2114e83017c4050b2a68cf039c6d3c559

* polish code

Change-Id: I7d4194102c2f1b0743b74fbd5fc284eb8ef4d17c
2025-07-15 22:20:03 +08:00

475 lines
18 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Dict, Optional
import paddle
from fastdeploy import envs
from fastdeploy.engine.config import SpeculativeConfig
from fastdeploy.platforms import current_platform
if current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import (
get_padding_offset, save_output, set_stop_value_multi_ends,
step_paddle, update_inputs)
elif current_platform.is_gcu():
from fastdeploy.model_executor.ops.gcu import (get_padding_offset,
save_output,
set_stop_value_multi_ends,
update_inputs)
elif current_platform.is_dcu():
from fastdeploy.model_executor.ops.gpu import (get_padding_offset,
save_output,
set_stop_value_multi_ends,
step_paddle, update_inputs)
else:
from fastdeploy.model_executor.ops.gpu import (
get_padding_offset, save_output, save_output_topk, set_stop_value_multi_ends,
speculate_clear_accept_nums, speculate_get_output_padding_offset,
speculate_get_padding_offset, speculate_get_seq_lens_output,
speculate_save_output, speculate_set_value_by_flags_and_idx,
speculate_step_paddle, speculate_step_system_cache,
speculate_update_v3, step_paddle, step_system_cache, update_inputs,
step_reschedule)
from fastdeploy.worker.output import (ModelOutputData, ModelRunnerOutput,
SamplerOutput)
DISABLE_RECOVER = (envs.FD_DISABLED_RECOVER == "1")
def pre_process(
max_len: int,
input_ids: paddle.Tensor,
seq_lens_this_time: int,
speculative_decoding: bool,
draft_tokens: Optional[paddle.Tensor] = None,
seq_lens_encoder: Optional[paddle.Tensor] = None,
seq_lens_decoder: Optional[paddle.Tensor] = None,
):
"""
Preprocessing before embedding.
Args:
max_len:
input_ids:
seq_lens_this_time:
speculative_decoding:
draft_tokens:
seq_lens_encoder:
Return:
ids_remove_padding:
cum_offsets:
padding_offset:
cu_seqlens_q:
cu_seqlens_k:
"""
# Remove padding
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
token_num = paddle.sum(seq_lens_this_time)
output_padding_offset = None
output_cum_offsets = None
if speculative_decoding:
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = speculate_get_padding_offset(
input_ids,
draft_tokens,
cum_offsets_now,
token_num,
seq_lens_this_time,
seq_lens_encoder,
)
seq_lens_output = speculate_get_seq_lens_output(
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
)
if isinstance(seq_lens_output, list):
seq_lens_output = seq_lens_output[0]
output_token_num = paddle.sum(seq_lens_output)
output_cum_offsets_tmp = paddle.cumsum(max_len - seq_lens_output)
output_padding_offset, output_cum_offsets = speculate_get_output_padding_offset(
output_cum_offsets_tmp,
output_token_num,
seq_lens_output,
max_len,
)
else:
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num,
seq_lens_this_time)
return (ids_remove_padding, cum_offsets, padding_offset, cu_seqlens_q,
cu_seqlens_k, output_cum_offsets, output_padding_offset)
def post_process_normal(sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
skip_save_output: bool = False) -> ModelRunnerOutput:
""" Post-processing steps after completing a single token generation. """
# handle vl:
if model_output.enable_thinking:
exists_think_end = sampler_output.sampled_token_ids == model_output.think_end_id
paddle.assign(
paddle.where(
exists_think_end,
model_output.need_think_end - 1,
model_output.need_think_end,
), model_output.need_think_end)
paddle.assign(
paddle.where(
model_output.need_think_end.cast("bool"),
model_output.reasoning_index - 1,
model_output.reasoning_index,
), model_output.reasoning_index)
stop_wo_think = (
(sampler_output.sampled_token_ids == model_output.eos_token_id) |
(model_output.reasoning_index == 0)) & (
model_output.need_think_end > 0)
sampler_output.sampled_token_ids = paddle.where(stop_wo_think,
model_output.think_end_id,
sampler_output.sampled_token_ids)
paddle.assign(
paddle.where(
stop_wo_think,
model_output.need_think_end - 1,
model_output.need_think_end,
), model_output.need_think_end)
# 1. Set stop value
paddle.assign(
paddle.where(
model_output.stop_flags,
model_output.step_idx,
model_output.step_idx + 1,
),
model_output.step_idx,
)
length_cond = paddle.greater_equal(model_output.step_idx,
model_output.max_dec_len)
paddle.assign(
paddle.logical_or(model_output.stop_flags, length_cond),
model_output.stop_flags,
)
# TODO(gongshaotian): Add use_stop_seqs
set_stop_value_multi_ends(sampler_output.sampled_token_ids, model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.eos_token_id,
model_output.next_tokens, False) # multi ends
# 2. Update the input buffer of the model
with paddle.framework._no_check_dy2st_diff():
update_inputs(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.input_ids,
model_output.stop_nums,
sampler_output.sampled_token_ids,
model_output.is_block_step,
)
# 3. Transmit the model's output and stop generation signal via message queue.
# In the future, we will abandon this approach.
if not skip_save_output:
if sampler_output.logprobs_tensors is None:
save_output(
sampler_output.sampled_token_ids,
model_output.not_need_stop,
model_output.mp_rank,
save_each_rank, # save_each_rank
)
else:
save_output_topk(
sampler_output.sampled_token_ids,
sampler_output.logprobs_tensors.logprob_token_ids,
sampler_output.logprobs_tensors.logprobs,
sampler_output.logprobs_tensors.selected_token_ranks,
model_output.not_need_stop,
model_output.mp_rank,
)
def post_process_specualate(model_output, save_each_rank: bool = False, skip_save_output: bool = False):
""""""
speculate_update_v3(
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.not_need_stop,
model_output.draft_tokens,
model_output.actual_draft_token_num,
model_output.accept_tokens,
model_output.accept_num,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.is_block_step,
model_output.stop_nums,
)
if not skip_save_output:
speculate_save_output(
model_output.accept_tokens,
model_output.accept_num,
model_output.not_need_stop,
model_output.mp_rank,
save_each_rank,
)
speculate_clear_accept_nums(model_output.accept_num,
model_output.seq_lens_decoder)
# Update pre_ids through accept tokens
speculate_set_value_by_flags_and_idx(
model_output.pre_ids,
model_output.accept_tokens,
model_output.accept_num,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.step_idx,
)
def post_process(sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
speculative_decoding: bool = False,
skip_save_output: bool = False) -> None:
""" Post-processing steps after completing a single token generation. """
if speculative_decoding:
post_process_specualate(model_output, save_each_rank, skip_save_output)
else:
post_process_normal(sampler_output, model_output, save_each_rank,
skip_save_output)
def step_cuda(
share_inputs: Dict[str, paddle.Tensor],
block_size: int,
enc_dec_block_num: int,
speculative_config: SpeculativeConfig,
enable_prefix_caching: bool = False,
) -> None:
"""
TODO(gongshaotian): normalization name
"""
if speculative_config.method is not None:
if enable_prefix_caching:
speculate_step_system_cache(
share_inputs['stop_flags'],
share_inputs["seq_lens_this_time"],
share_inputs['step_seq_lens_encoder'],
share_inputs['step_seq_lens_decoder'],
share_inputs['seq_lens_encoder'],
share_inputs['seq_lens_decoder'],
share_inputs["block_tables"],
share_inputs['encoder_block_lens'],
share_inputs["is_block_step"],
share_inputs['step_block_list'],
share_inputs['step_lens'],
share_inputs['recover_block_list'],
share_inputs['recover_lens'],
share_inputs['need_block_list'],
share_inputs['need_block_len'],
share_inputs['used_list_len'],
share_inputs['free_list'],
share_inputs['free_list_len'],
share_inputs['input_ids'],
share_inputs['pre_ids'],
share_inputs['step_idx'],
share_inputs['next_tokens'],
share_inputs['first_token_ids'],
share_inputs["accept_num"],
block_size,
enc_dec_block_num,
speculative_config.num_speculative_tokens,
)
else:
speculate_step_paddle(
share_inputs['stop_flags'],
share_inputs["seq_lens_this_time"],
share_inputs['step_seq_lens_encoder'],
share_inputs['seq_lens_encoder'],
share_inputs['seq_lens_decoder'],
share_inputs["block_tables"],
share_inputs['encoder_block_lens'],
share_inputs["is_block_step"],
share_inputs['step_block_list'],
share_inputs['step_lens'],
share_inputs['recover_block_list'],
share_inputs['recover_lens'],
share_inputs['need_block_list'],
share_inputs['need_block_len'],
share_inputs['used_list_len'],
share_inputs['free_list'],
share_inputs['free_list_len'],
share_inputs['input_ids'],
share_inputs['pre_ids'],
share_inputs['step_idx'],
share_inputs['next_tokens'],
share_inputs['first_token_ids'],
share_inputs["accept_num"],
block_size,
enc_dec_block_num,
speculative_config.num_speculative_tokens,
)
else:
if enable_prefix_caching:
step_system_cache(
share_inputs["stop_flags"], share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["step_seq_lens_decoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"], share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"], share_inputs["step_block_list"],
share_inputs["step_lens"], share_inputs["recover_block_list"],
share_inputs["recover_lens"], share_inputs["need_block_list"],
share_inputs["need_block_len"], share_inputs["used_list_len"],
share_inputs["free_list"], share_inputs["free_list_len"],
share_inputs["input_ids"], share_inputs["pre_ids"],
share_inputs["step_idx"], share_inputs["next_tokens"],
share_inputs["first_token_ids"], block_size, enc_dec_block_num)
elif DISABLE_RECOVER:
step_reschedule(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)
else:
step_paddle(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)
def rebuild_padding(tmp_out: paddle.Tensor,
cum_offsets: paddle.Tensor,
seq_len_this_time: paddle.Tensor,
seq_lens_decoder: paddle.Tensor,
seq_lens_encoder: paddle.Tensor,
output_padding_offset: Optional[paddle.Tensor] = None,
max_input_length: Optional[int] = None):
"""
Args:
Returns:
"""
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
seq_len_this_time,
seq_lens_decoder,
seq_lens_encoder,
output_padding_offset,
max_input_length,
)
elif current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
seq_len_this_time,
seq_lens_decoder,
seq_lens_encoder,
output_padding_offset,
max_input_length,
)
elif current_platform.is_gcu():
from fastdeploy.model_executor.ops.gcu import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
seq_len_this_time,
seq_lens_decoder,
seq_lens_encoder,
output_padding_offset,
max_input_length,
)
elif current_platform.is_cpu():
from fastdeploy.model_executor.ops.cpu import rebuild_padding_cpu
hidden_states = rebuild_padding_cpu(
tmp_out,
cum_offsets,
seq_len_this_time,
seq_lens_decoder,
seq_lens_encoder,
output_padding_offset,
max_input_length,
)
else:
raise RuntimeError("Not supported platform")
return hidden_states