v1.0 align accuracy

This commit is contained in:
Wanglongzhi2001
2024-12-17 09:37:05 +00:00
parent 47aacb5062
commit e52155f07e
4 changed files with 62 additions and 48 deletions

View File

@@ -93,9 +93,7 @@ class Config:
self.use_cache_kv_int4 = int(os.getenv("USE_CACHE_KV_INT4", 0))
# speculate decoding config
self.speculate_method = str(env.get("SPECULATE_METHOD", None))
self.speculate_max_draft_token_num = int(os.getenv("SPECULATE_MAX_DRAFT_TOKEN_NUM", 5))
self.speculate_max_ngram_size = int(os.getenv("SPECULATE_MAX_NGRAM_SIZE", 2))
self.speculate_method = str(os.getenv("SPECULATE_METHOD", None))
# infer config
self.max_batch_size = int(env.get("BATCH_SIZE", 50))

View File

@@ -69,11 +69,16 @@ class ModelRunner:
self.init_inputs()
# whether use speculate decoding
if self.config.speculate_method is not None and self.config.speculate_method == "inference_with_reference":
self.proposer = InferenceWithReferenceProposer(
self.config.speculate_max_draft_token_num,
self.config.speculate_max_ngram_size,
self.args.max_batch_size)
logger.info(f'speculate_method: {self.config.speculate_method}')
if self.config.speculate_method is not None:
if self.config.speculate_method == "inference_with_reference":
self.proposer = InferenceWithReferenceProposer(
self.model_cfg["speculate_max_draft_token_num"],
self.model_cfg["speculate_max_ngram_size"],
self.args.max_batch_size,
self.args.max_seq_len)
else:
raise NotImplementedError(f'Not support {self.config.speculate_method}, only support inference_with_reference now.')
else:
self.proposer = None
@@ -274,18 +279,17 @@ class ModelRunner:
self.share_inputs["ori_seq_lens_encoder"] = paddle.full(
shape=[self.args.max_batch_size, 1], fill_value=0, dtype="int32")
# speculate decoding input
logger.info(f'Speculative method: {self.config.speculate_method}')
if self.config.speculate_method is not None:
self.share_inputs["input_ids_cpu"] = paddle.full(
shape=[self.args.max_batch_size, self.args.max_seq_len], fill_value=1, dtype='int64').cpu()
self.share_inputs["accept_tokens"] = paddle.full(
shape=[self.args.max_batch_size, self.config.speculate_max_draft_token_num + 1], fill_value=0, dtype="int64"
shape=[self.args.max_batch_size, self.model_cfg["speculate_max_draft_token_num"] + 1], fill_value=0, dtype="int64"
)
self.share_inputs["accept_num"] = paddle.full(shape=[self.args.max_batch_size], fill_value=0, dtype="int32")
self.share_inputs["draft_tokens"] = paddle.full(
shape=[self.args.max_batch_size, self.config.speculate_max_draft_token_num + 1], fill_value=0, dtype="int64"
shape=[self.args.max_batch_size, self.model_cfg["speculate_max_draft_token_num"] + 1], fill_value=0, dtype="int64"
)
self.share_inputs["actual_draft_token_num"] = paddle.full(
shape=[self.args.max_batch_size], fill_value=self.config.speculate_max_draft_token_num, dtype="int32"
shape=[self.args.max_batch_size], fill_value=self.model_cfg["speculate_max_draft_token_num"], dtype="int32"
)
def dy_input_preprocess(self, tasks):
@@ -344,10 +348,8 @@ class ModelRunner:
task["stop_seqs"], dtype="int64")
if self.proposer is not None:
if self.config.speculate_method == "inference_with_reference":
speculate_update_input_ids_cpu(self.share_inputs['input_ids_cpu'], task['input_ids'], idx, self.args.max_seq_len)
self.share_inputs["draft_tokens"][idx:idx + 1] = np.zeros([self.config.speculate_max_draft_token_num + 1])
self.share_inputs["actual_draft_token_num"][idx:idx + 1] = np.array([self.config.speculate_max_draft_token_num])
self.proposer.update(idx, length)
self.share_inputs["draft_tokens"][idx:idx + 1] = np.zeros([self.model_cfg["speculate_max_draft_token_num"] + 1])
self.share_inputs["actual_draft_token_num"][idx:idx + 1] = np.array([self.model_cfg["speculate_max_draft_token_num"]])
def step_cuda(self, seq_lens_this_time):
"""
@@ -381,7 +383,7 @@ class ModelRunner:
self.share_inputs['input_ids'], self.share_inputs['pre_ids'],
self.share_inputs['step_idx'], self.share_inputs['next_tokens'],
self.args.block_size, self.args.enc_dec_block_num, self.args.first_token_id,
self.config.speculate_max_draft_token_num)
self.model_cfg["speculate_max_draft_token_num"])
def initialize_engine_ready_check_flag(self):
"""
@@ -512,7 +514,6 @@ class ModelRunner:
if self.proposer is not None:
logger.info("start run proposer")
logger.info(f'before draft_tokens: {self.share_inputs["draft_tokens"]}')
logger.info(f'before accept_tokens: {self.share_inputs["accept_tokens"]}')
self.proposer.run(
self.share_inputs,
@@ -521,19 +522,19 @@ class ModelRunner:
)
logger.info(f'after draft_tokens: {self.share_inputs["draft_tokens"]}')
logger.info("finish run proposer")
logger.info(f'input_ids: {self.share_inputs["input_ids"]}')
logger.info(f'input_ids_cpu: {self.share_inputs["input_ids_cpu"]}')
logger.info(f'seq_lens_this_time: {self.share_inputs["seq_lens_this_time"]}')
logger.info(f'seq_lens_encoder: {self.share_inputs["seq_lens_encoder"]}')
logger.info(f'seq_lens_decoder: {self.share_inputs["seq_lens_decoder"]}')
logger.info(f'step_idx: {self.share_inputs["step_idx"]}')
logger.info(f'next_tokens: {self.share_inputs["next_tokens"]}')
logger.info(f'before block_tables: {self.share_inputs["block_tables"]}')
# logger.info(f'input_ids: {self.share_inputs["input_ids"]}')
# logger.info(f'input_ids_cpu: {self.share_inputs["input_ids_cpu"]}')
# logger.info(f'seq_lens_this_time: {self.share_inputs["seq_lens_this_time"]}')
# logger.info(f'seq_lens_encoder: {self.share_inputs["seq_lens_encoder"]}')
# logger.info(f'seq_lens_decoder: {self.share_inputs["seq_lens_decoder"]}')
# logger.info(f'step_idx: {self.share_inputs["step_idx"]}')
# logger.info(f'next_tokens: {self.share_inputs["next_tokens"]}')
# logger.info(f'before block_tables: {self.share_inputs["block_tables"]}')
self.infer_engine.predictor.run()
logger.info(f'after accept_tokens: {self.share_inputs["accept_tokens"]}')
logger.info(f'after accept_num: {self.share_inputs["accept_num"]}')
logger.info(f'after block_tables: {self.share_inputs["block_tables"]}')
# logger.info(f'after block_tables: {self.share_inputs["block_tables"]}')
self.share_inputs['infer_seed'].add_(infer_seed_increment)
self.share_inputs['infer_seed'][:] %= self.MAX_INFER_SEED

View File

@@ -16,7 +16,6 @@ from __future__ import annotations
from abc import ABC, abstractmethod
import paddle
from paddlenlp_ops import ngram_match
class Proposer(ABC):
@@ -43,7 +42,7 @@ class InferenceWithReferenceProposer(Proposer):
It match tokens in the input and output as draft tokens.
"""
def __init__(self, max_draft_token_num: int, max_ngram_size: int, max_batch_size: int):
def __init__(self, max_draft_token_num: int, max_ngram_size: int, max_batch_size: int, max_seq_len: int, **kwargs):
"""
Args:
max_draft_token_num (int):
@@ -54,34 +53,33 @@ class InferenceWithReferenceProposer(Proposer):
The hyperparameter of n in the paper.
max_batch_size (int):
The maximum batch size.
max_seq_len (int):
The maximum sequence length.
"""
super().__init__()
self.max_ngram_size = max_ngram_size
self.input_ids_len = paddle.zeros(shape=[max_batch_size, 1], dtype="int64").cpu()
self.input_ids_cpu = paddle.zeros(shape=[max_batch_size, max_seq_len], dtype="int64").cpu()
self.max_batch_size = max_batch_size
self.max_draft_token_num = max_draft_token_num
# self.input_ids_cpu = paddle.full(shape=[max_batch_size, max_seq_len], fill_value=1, dtype="int64").cpu()
def update(self, bid: int, seq_len: int):
"""
Used when inserting a new query to update the length of the input_ids.
"""
self.input_ids_len[bid] = seq_len
def run(self, share_inputs: dict[str, paddle.Tensor], **kargs):
def run(self, model_inputs: dict[str, paddle.Tensor], **kargs):
"""
Use ngram_match to get draft tokens from the input and output.
"""
draft_tokens = share_inputs["draft_tokens"].cpu()
draft_tokens = model_inputs["draft_tokens"].cpu()
seq_lens_this_time = kargs["seq_lens_this_time"].cpu()
seq_lens_encoder = share_inputs["seq_lens_encoder"].cpu()
seq_lens_decoder = share_inputs["seq_lens_decoder"].cpu()
seq_lens_encoder = model_inputs["seq_lens_encoder"].cpu()
seq_lens_decoder = model_inputs["seq_lens_decoder"].cpu()
from paddlenlp_ops import ngram_match
ngram_match(
share_inputs["input_ids_cpu"],
self.input_ids_cpu,
self.input_ids_len.cpu(),
share_inputs["pre_ids"].cpu(),
share_inputs["step_idx"].cpu(),
share_inputs["actual_draft_token_num"].cpu(),
model_inputs["pre_ids"].cpu(),
model_inputs["step_idx"].cpu(),
model_inputs["actual_draft_token_num"].cpu(),
draft_tokens,
seq_lens_this_time,
seq_lens_encoder,
@@ -90,6 +88,7 @@ class InferenceWithReferenceProposer(Proposer):
self.max_ngram_size,
self.max_draft_token_num,
)
share_inputs["draft_tokens"][:] = draft_tokens.cuda()
share_inputs["seq_lens_encoder"][:] = seq_lens_encoder.cuda()
model_inputs["draft_tokens"][:] = draft_tokens.cuda()
model_inputs["seq_lens_encoder"][:] = seq_lens_encoder.cuda()
kargs["seq_lens_this_time"][:] = seq_lens_this_time.cuda()

View File

@@ -41,7 +41,7 @@ class TokenProcessor(object):
self.tokens_counter = Counter()
if self.cfg.speculate_method is not None:
self.output_tokens = paddle.full(shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKEN_NUM + MAX_DRAFT_TOKEN_NUM + 2], fill_value=2, dtype="int64")
self.output_tokens = paddle.full(shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKEN_NUM + SPECULATE_MAX_BSZ + 2], fill_value=2, dtype="int64")
else:
self.output_tokens = paddle.full(shape=[self.cfg.max_batch_size + 2, 1], fill_value=2, dtype="int64")
self.worker = None
@@ -302,6 +302,7 @@ class TokenProcessor(object):
batch post-processing function
"""
tokens = self.output_tokens.numpy()
model_server_logger.info(f"speculate_result tokens: {self.output_tokens.tolist()}")
batch = self.output_tokens[1]
output_token_msg_id = int(self.output_tokens[0])
accept_num = tokens[2 : batch + 2]
@@ -373,6 +374,21 @@ class WarmUpTokenProcessor(TokenProcessor):
except Exception as e:
model_server_logger.info("while get input_data error: {0} {1}".format(e, str(traceback.format_exc())))
def process_speculate_results(self):
"""
read tokens from paddle inference engine and process
"""
while self._is_running:
try:
rank_id = 0
speculate_get_output(self.output_tokens, rank_id, self._is_blocking)
if self.output_tokens[0] == -2:
continue
self._process_speculate_output()
except Exception as e:
model_server_logger.info("while get input_data error: {0} {1}".format(e, str(traceback.format_exc())))
def stop(self):
"""
stop warm up thread