mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
2
.github/workflows/_unit_test_coverage.yml
vendored
2
.github/workflows/_unit_test_coverage.yml
vendored
@@ -150,6 +150,7 @@ jobs:
|
||||
|
||||
python -m pip install coverage
|
||||
python -m pip install diff-cover
|
||||
python -m pip install jsonschema aistudio_sdk==0.3.5
|
||||
python -m pip install ${fd_wheel_url}
|
||||
if [ -d "tests/plugins" ]; then
|
||||
cd tests/plugins
|
||||
@@ -160,6 +161,7 @@ jobs:
|
||||
fi
|
||||
export COVERAGE_FILE=/workspace/FastDeploy/coveragedata/.coverage
|
||||
export COVERAGE_RCFILE=/workspace/FastDeploy/scripts/.coveragerc
|
||||
export COVERAGE_PROCESS_START=/workspace/FastDeploy/scripts/.coveragerc
|
||||
TEST_EXIT_CODE=0
|
||||
bash scripts/coverage_run.sh || TEST_EXIT_CODE=8
|
||||
git diff origin/${BASE_REF}..HEAD --unified=0 > diff.txt
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
[run]
|
||||
source = fastdeploy
|
||||
parallel = True
|
||||
concurrency = multiprocessing
|
||||
|
||||
[paths]
|
||||
source =
|
||||
|
||||
1040
test/e2e/test_EB_Lite_serving.py
Normal file
1040
test/e2e/test_EB_Lite_serving.py
Normal file
File diff suppressed because it is too large
Load Diff
578
test/e2e/test_EB_VL_Lite_serving.py
Normal file
578
test/e2e/test_EB_VL_Lite_serving.py
Normal file
@@ -0,0 +1,578 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
import openai
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
# Read ports from environment variables; use default values if not set
|
||||
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
||||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
||||
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
||||
|
||||
# List of ports to clean before and after tests
|
||||
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
|
||||
|
||||
|
||||
def is_port_open(host: str, port: int, timeout=1.0):
|
||||
"""
|
||||
Check if a TCP port is open on the given host.
|
||||
Returns True if connection succeeds, False otherwise.
|
||||
"""
|
||||
try:
|
||||
with socket.create_connection((host, port), timeout):
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def kill_process_on_port(port: int):
|
||||
"""
|
||||
Kill processes that are listening on the given port.
|
||||
Uses `lsof` to find process ids and sends SIGKILL.
|
||||
"""
|
||||
try:
|
||||
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
||||
for pid in output.splitlines():
|
||||
os.kill(int(pid), signal.SIGKILL)
|
||||
print(f"Killed process on port {port}, pid={pid}")
|
||||
except subprocess.CalledProcessError:
|
||||
pass
|
||||
|
||||
|
||||
def clean_ports():
|
||||
"""
|
||||
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
||||
"""
|
||||
for port in PORTS_TO_CLEAN:
|
||||
kill_process_on_port(port)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup_and_run_server():
|
||||
"""
|
||||
Pytest fixture that runs once per test session:
|
||||
- Cleans ports before tests
|
||||
- Starts the API server as a subprocess
|
||||
- Waits for server port to open (up to 30 seconds)
|
||||
- Tears down server after all tests finish
|
||||
"""
|
||||
print("Pre-test port cleanup...")
|
||||
clean_ports()
|
||||
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
model_path = os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle")
|
||||
else:
|
||||
model_path = "./ernie-4_5-vl-28b-a3b-bf16-paddle"
|
||||
|
||||
log_path = "server.log"
|
||||
limit_mm_str = json.dumps({"image": 100, "video": 100})
|
||||
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"fastdeploy.entrypoints.openai.api_server",
|
||||
"--model",
|
||||
model_path,
|
||||
"--port",
|
||||
str(FD_API_PORT),
|
||||
"--tensor-parallel-size",
|
||||
"2",
|
||||
"--engine-worker-queue-port",
|
||||
str(FD_ENGINE_QUEUE_PORT),
|
||||
"--metrics-port",
|
||||
str(FD_METRICS_PORT),
|
||||
"--enable-mm",
|
||||
"--max-model-len",
|
||||
"32768",
|
||||
"--max-num-batched-tokens",
|
||||
"384",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--limit-mm-per-prompt",
|
||||
limit_mm_str,
|
||||
"--enable-chunked-prefill",
|
||||
"--kv-cache-ratio",
|
||||
"0.71",
|
||||
"--quantization",
|
||||
"wint4",
|
||||
"--reasoning-parser",
|
||||
"ernie-45-vl",
|
||||
]
|
||||
|
||||
# Start subprocess in new process group
|
||||
with open(log_path, "w") as logfile:
|
||||
process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=logfile,
|
||||
stderr=subprocess.STDOUT,
|
||||
start_new_session=True, # Enables killing full group via os.killpg
|
||||
)
|
||||
|
||||
# Wait up to 10 minutes for API server to be ready
|
||||
for _ in range(10 * 60):
|
||||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||||
print(f"API server is up on port {FD_API_PORT}")
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
except Exception as e:
|
||||
print(f"Failed to kill process group: {e}")
|
||||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||||
|
||||
yield # Run tests
|
||||
|
||||
print("\n===== Post-test server cleanup... =====")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
print(f"API server (pid={process.pid}) terminated")
|
||||
except Exception as e:
|
||||
print(f"Failed to terminate API server: {e}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def api_url(request):
|
||||
"""
|
||||
Returns the API endpoint URL for chat completions.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def metrics_url(request):
|
||||
"""
|
||||
Returns the metrics endpoint URL.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def headers():
|
||||
"""
|
||||
Returns common HTTP request headers.
|
||||
"""
|
||||
return {"Content-Type": "application/json"}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def consistent_payload():
|
||||
"""
|
||||
Returns a fixed payload for consistency testing,
|
||||
including a fixed random seed and temperature.
|
||||
"""
|
||||
return {
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
}
|
||||
],
|
||||
"temperature": 0.8,
|
||||
"top_p": 0, # fix top_p to reduce randomness
|
||||
"seed": 13, # fixed random seed
|
||||
}
|
||||
|
||||
|
||||
# ==========================
|
||||
# Consistency test for repeated runs with fixed payload
|
||||
# ==========================
|
||||
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
"""
|
||||
Test that result is same as the base result.
|
||||
"""
|
||||
# request
|
||||
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||||
assert resp1.status_code == 200
|
||||
result1 = resp1.json()
|
||||
content1 = (
|
||||
result1["choices"][0]["message"]["reasoning_content"]
|
||||
+ "</think>"
|
||||
+ result1["choices"][0]["message"]["content"]
|
||||
)
|
||||
file_res_temp = "ernie-4_5-vl"
|
||||
f_o = open(file_res_temp, "a")
|
||||
f_o.writelines(content1)
|
||||
f_o.close()
|
||||
|
||||
# base result
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2")
|
||||
else:
|
||||
base_file = "ernie-4_5-vl-base-tp2"
|
||||
with open(base_file, "r") as f:
|
||||
content2 = f.read()
|
||||
|
||||
# Verify that result is same as the base result
|
||||
assert content1 == content2
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client Chat Completion Test
|
||||
# ==========================
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client():
|
||||
ip = "0.0.0.0"
|
||||
service_http_port = str(FD_API_PORT)
|
||||
client = openai.Client(
|
||||
base_url=f"http://{ip}:{service_http_port}/v1",
|
||||
api_key="EMPTY_API_KEY",
|
||||
)
|
||||
return client
|
||||
|
||||
|
||||
# Non-streaming test
|
||||
def test_non_streaming_chat(openai_client):
|
||||
"""Test non-streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant.",
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "content")
|
||||
|
||||
|
||||
# Streaming test
|
||||
def test_streaming_chat(openai_client, capsys):
|
||||
"""Test streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant.",
|
||||
}, # system不是必需,可选
|
||||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=512,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
output = []
|
||||
for chunk in response:
|
||||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||||
output.append(chunk.choices[0].delta.content)
|
||||
assert len(output) > 2
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client additional chat/completions test
|
||||
# ==========================
|
||||
|
||||
|
||||
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
# 设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||||
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||||
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||
|
||||
# 不设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||||
assert response.choices[0].message.prompt_token_ids is None
|
||||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||||
assert response.choices[0].message.completion_token_ids is None
|
||||
|
||||
|
||||
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in streaming chat functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=True,
|
||||
)
|
||||
is_first_chunk = True
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, "choices")
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], "delta")
|
||||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||||
if is_first_chunk:
|
||||
is_first_chunk = False
|
||||
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
else:
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, "choices")
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], "delta")
|
||||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
|
||||
|
||||
def test_chat_with_thinking(openai_client, capsys):
|
||||
"""
|
||||
Test enable_thinking & reasoning_max_tokens option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
# enable thinking, non-streaming
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
|
||||
temperature=1,
|
||||
stream=False,
|
||||
max_tokens=10,
|
||||
extra_body={"chat_template_kwargs": {"enable_thinking": True}},
|
||||
)
|
||||
assert response.choices[0].message.reasoning_content is not None
|
||||
|
||||
# disable thinking, non-streaming
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
|
||||
temperature=1,
|
||||
stream=False,
|
||||
max_tokens=10,
|
||||
extra_body={"chat_template_kwargs": {"enable_thinking": False}},
|
||||
)
|
||||
assert response.choices[0].message.reasoning_content is None
|
||||
assert "</think>" not in response.choices[0].message.content
|
||||
|
||||
# enable thinking, streaming
|
||||
reasoning_max_tokens = 3
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
|
||||
temperature=1,
|
||||
extra_body={
|
||||
"chat_template_kwargs": {"enable_thinking": True},
|
||||
"reasoning_max_tokens": reasoning_max_tokens,
|
||||
"return_token_ids": True,
|
||||
},
|
||||
stream=True,
|
||||
max_tokens=10,
|
||||
)
|
||||
completion_tokens = reasoning_tokens = 1
|
||||
total_tokens = 0
|
||||
for chunk_id, chunk in enumerate(response):
|
||||
if chunk_id == 0: # the first chunk is an extra chunk
|
||||
continue
|
||||
delta_message = chunk.choices[0].delta
|
||||
if delta_message.content != "" and delta_message.reasoning_content == "":
|
||||
completion_tokens += len(delta_message.completion_token_ids)
|
||||
elif delta_message.reasoning_content != "" and delta_message.content == "":
|
||||
reasoning_tokens += len(delta_message.completion_token_ids)
|
||||
total_tokens += len(delta_message.completion_token_ids)
|
||||
assert completion_tokens + reasoning_tokens == total_tokens
|
||||
assert reasoning_tokens <= reasoning_max_tokens
|
||||
|
||||
|
||||
def test_profile_reset_block_num():
|
||||
"""测试profile reset_block_num功能,与baseline diff不能超过5%"""
|
||||
log_file = "./log/config.log"
|
||||
baseline = 40000
|
||||
|
||||
if not os.path.exists(log_file):
|
||||
pytest.fail(f"Log file not found: {log_file}")
|
||||
|
||||
with open(log_file, "r") as f:
|
||||
log_lines = f.readlines()
|
||||
|
||||
target_line = None
|
||||
for line in log_lines:
|
||||
if "Reset block num" in line:
|
||||
target_line = line.strip()
|
||||
break
|
||||
|
||||
if target_line is None:
|
||||
pytest.fail("日志中没有Reset block num信息")
|
||||
|
||||
match = re.search(r"total_block_num:(\d+)", target_line)
|
||||
if not match:
|
||||
pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
|
||||
|
||||
try:
|
||||
actual_value = int(match.group(1))
|
||||
except ValueError:
|
||||
pytest.fail(f"Invalid number format: {match.group(1)}")
|
||||
|
||||
lower_bound = baseline * (1 - 0.05)
|
||||
upper_bound = baseline * (1 + 0.05)
|
||||
print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
|
||||
|
||||
assert lower_bound <= actual_value <= upper_bound, (
|
||||
f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
|
||||
f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
|
||||
)
|
||||
641
test/e2e/test_Qwen2-7B-Instruct_serving.py
Normal file
641
test/e2e/test_Qwen2-7B-Instruct_serving.py
Normal file
@@ -0,0 +1,641 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import concurrent.futures
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
import openai
|
||||
import pytest
|
||||
import requests
|
||||
from jsonschema import validate
|
||||
|
||||
# Read ports from environment variables; use default values if not set
|
||||
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
||||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
||||
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
||||
|
||||
# List of ports to clean before and after tests
|
||||
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
|
||||
|
||||
|
||||
def is_port_open(host: str, port: int, timeout=1.0):
|
||||
"""
|
||||
Check if a TCP port is open on the given host.
|
||||
Returns True if connection succeeds, False otherwise.
|
||||
"""
|
||||
try:
|
||||
with socket.create_connection((host, port), timeout):
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def kill_process_on_port(port: int):
|
||||
"""
|
||||
Kill processes that are listening on the given port.
|
||||
Uses `lsof` to find process ids and sends SIGKILL.
|
||||
"""
|
||||
try:
|
||||
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
||||
for pid in output.splitlines():
|
||||
os.kill(int(pid), signal.SIGKILL)
|
||||
print(f"Killed process on port {port}, pid={pid}")
|
||||
except subprocess.CalledProcessError:
|
||||
pass
|
||||
|
||||
|
||||
def clean_ports():
|
||||
"""
|
||||
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
||||
"""
|
||||
for port in PORTS_TO_CLEAN:
|
||||
kill_process_on_port(port)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup_and_run_server():
|
||||
"""
|
||||
Pytest fixture that runs once per test session:
|
||||
- Cleans ports before tests
|
||||
- Starts the API server as a subprocess
|
||||
- Waits for server port to open (up to 30 seconds)
|
||||
- Tears down server after all tests finish
|
||||
"""
|
||||
print("Pre-test port cleanup...")
|
||||
clean_ports()
|
||||
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
model_path = os.path.join(base_path, "Qwen2-7B-Instruct")
|
||||
else:
|
||||
model_path = "./Qwen2-7B-Instruct"
|
||||
|
||||
log_path = "server.log"
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"fastdeploy.entrypoints.openai.api_server",
|
||||
"--model",
|
||||
model_path,
|
||||
"--port",
|
||||
str(FD_API_PORT),
|
||||
"--tensor-parallel-size",
|
||||
"1",
|
||||
"--engine-worker-queue-port",
|
||||
str(FD_ENGINE_QUEUE_PORT),
|
||||
"--metrics-port",
|
||||
str(FD_METRICS_PORT),
|
||||
"--max-model-len",
|
||||
"32768",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--quantization",
|
||||
"wint8",
|
||||
]
|
||||
|
||||
# Start subprocess in new process group
|
||||
with open(log_path, "w") as logfile:
|
||||
process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=logfile,
|
||||
stderr=subprocess.STDOUT,
|
||||
start_new_session=True, # Enables killing full group via os.killpg
|
||||
)
|
||||
|
||||
# Wait up to 300 seconds for API server to be ready
|
||||
for _ in range(300):
|
||||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||||
print(f"API server is up on port {FD_API_PORT}")
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
except Exception as e:
|
||||
print(f"Failed to kill process group: {e}")
|
||||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||||
|
||||
yield # Run tests
|
||||
|
||||
print("\n===== Post-test server cleanup... =====")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
print(f"API server (pid={process.pid}) terminated")
|
||||
except Exception as e:
|
||||
print(f"Failed to terminate API server: {e}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def api_url(request):
|
||||
"""
|
||||
Returns the API endpoint URL for chat completions.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def metrics_url(request):
|
||||
"""
|
||||
Returns the metrics endpoint URL.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def headers():
|
||||
"""
|
||||
Returns common HTTP request headers.
|
||||
"""
|
||||
return {"Content-Type": "application/json"}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def consistent_payload():
|
||||
"""
|
||||
Returns a fixed payload for consistency testing,
|
||||
including a fixed random seed and temperature.
|
||||
"""
|
||||
return {
|
||||
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
|
||||
"temperature": 0.9,
|
||||
"top_p": 0, # fix top_p to reduce randomness
|
||||
"seed": 13, # fixed random seed
|
||||
}
|
||||
|
||||
|
||||
# ==========================
|
||||
# JSON Schema for validating chat API responses
|
||||
# ==========================
|
||||
chat_response_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": {"type": "string"},
|
||||
"object": {"type": "string"},
|
||||
"created": {"type": "number"},
|
||||
"model": {"type": "string"},
|
||||
"choices": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"message": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"role": {"type": "string"},
|
||||
"content": {"type": "string"},
|
||||
},
|
||||
"required": ["role", "content"],
|
||||
},
|
||||
"index": {"type": "number"},
|
||||
"finish_reason": {"type": "string"},
|
||||
},
|
||||
"required": ["message", "index", "finish_reason"],
|
||||
},
|
||||
},
|
||||
},
|
||||
"required": ["id", "object", "created", "model", "choices"],
|
||||
}
|
||||
|
||||
|
||||
# ==========================
|
||||
# Helper function to calculate difference rate between two texts
|
||||
# ==========================
|
||||
def calculate_diff_rate(text1, text2):
|
||||
"""
|
||||
Calculate the difference rate between two strings
|
||||
based on the normalized Levenshtein edit distance.
|
||||
Returns a float in [0,1], where 0 means identical.
|
||||
"""
|
||||
if text1 == text2:
|
||||
return 0.0
|
||||
|
||||
len1, len2 = len(text1), len(text2)
|
||||
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
|
||||
|
||||
for i in range(len1 + 1):
|
||||
for j in range(len2 + 1):
|
||||
if i == 0 or j == 0:
|
||||
dp[i][j] = i + j
|
||||
elif text1[i - 1] == text2[j - 1]:
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
else:
|
||||
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
|
||||
|
||||
edit_distance = dp[len1][len2]
|
||||
max_len = max(len1, len2)
|
||||
return edit_distance / max_len if max_len > 0 else 0.0
|
||||
|
||||
|
||||
# ==========================
|
||||
# Valid prompt test cases for parameterized testing
|
||||
# ==========================
|
||||
valid_prompts = [
|
||||
[{"role": "user", "content": "你好"}],
|
||||
[{"role": "user", "content": "用一句话介绍 FastDeploy"}],
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("messages", valid_prompts)
|
||||
def test_valid_chat(messages, api_url, headers):
|
||||
"""
|
||||
Test valid chat requests.
|
||||
"""
|
||||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||||
|
||||
assert resp.status_code == 200
|
||||
validate(instance=resp.json(), schema=chat_response_schema)
|
||||
|
||||
|
||||
# ==========================
|
||||
# Consistency test for repeated runs with fixed payload
|
||||
# ==========================
|
||||
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
"""
|
||||
Test that two runs with the same fixed input produce similar outputs.
|
||||
"""
|
||||
# First request
|
||||
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||||
assert resp1.status_code == 200
|
||||
result1 = resp1.json()
|
||||
content1 = result1["choices"][0]["message"]["content"]
|
||||
|
||||
# Second request
|
||||
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||||
assert resp2.status_code == 200
|
||||
result2 = resp2.json()
|
||||
content2 = result2["choices"][0]["message"]["content"]
|
||||
|
||||
# Calculate difference rate
|
||||
diff_rate = calculate_diff_rate(content1, content2)
|
||||
|
||||
# Verify that the difference rate is below the threshold
|
||||
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
|
||||
|
||||
|
||||
# ==========================
|
||||
# Invalid prompt tests
|
||||
# ==========================
|
||||
|
||||
invalid_prompts = [
|
||||
[], # Empty array
|
||||
[{}], # Empty object
|
||||
[{"role": "user"}], # Missing content
|
||||
[{"content": "hello"}], # Missing role
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("messages", invalid_prompts)
|
||||
def test_invalid_chat(messages, api_url, headers):
|
||||
"""
|
||||
Test invalid chat inputs
|
||||
"""
|
||||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||||
assert resp.status_code >= 400, "Invalid request should return an error status code"
|
||||
|
||||
|
||||
# ==========================
|
||||
# Test for input exceeding context length
|
||||
# ==========================
|
||||
|
||||
|
||||
def test_exceed_context_length(api_url, headers):
|
||||
"""
|
||||
Test case for inputs that exceed the model's maximum context length.
|
||||
"""
|
||||
# Construct an overly long message
|
||||
long_content = "你好," * 20000
|
||||
|
||||
messages = [{"role": "user", "content": long_content}]
|
||||
|
||||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||||
|
||||
# Check if the response indicates a token limit error or server error (500)
|
||||
try:
|
||||
response_json = resp.json()
|
||||
except Exception:
|
||||
response_json = {}
|
||||
|
||||
# Check status code and response content
|
||||
assert (
|
||||
resp.status_code != 200 or "token" in json.dumps(response_json).lower()
|
||||
), f"Expected token limit error or similar, but got a normal response: {response_json}"
|
||||
|
||||
|
||||
# ==========================
|
||||
# Multi-turn Conversation Test
|
||||
# ==========================
|
||||
def test_multi_turn_conversation(api_url, headers):
|
||||
"""
|
||||
Test whether multi-turn conversation context is effective.
|
||||
"""
|
||||
messages = [
|
||||
{"role": "user", "content": "你是谁?"},
|
||||
{"role": "assistant", "content": "我是AI助手"},
|
||||
{"role": "user", "content": "你能做什么?"},
|
||||
]
|
||||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||||
assert resp.status_code == 200
|
||||
validate(instance=resp.json(), schema=chat_response_schema)
|
||||
|
||||
|
||||
# ==========================
|
||||
# Concurrent Performance Test
|
||||
# ==========================
|
||||
def test_concurrent_perf(api_url, headers):
|
||||
"""
|
||||
Send concurrent requests to test stability and response time.
|
||||
"""
|
||||
prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
|
||||
|
||||
def send_request():
|
||||
"""
|
||||
Send a single request
|
||||
"""
|
||||
resp = requests.post(api_url, headers=headers, json={"messages": prompts})
|
||||
assert resp.status_code == 200
|
||||
return resp.elapsed.total_seconds()
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
||||
futures = [executor.submit(send_request) for _ in range(8)]
|
||||
durations = [f.result() for f in futures]
|
||||
|
||||
print("\nResponse time for each request:", durations)
|
||||
|
||||
|
||||
# ==========================
|
||||
# Metrics Endpoint Test
|
||||
# ==========================
|
||||
|
||||
|
||||
def test_metrics_endpoint(metrics_url):
|
||||
"""
|
||||
Test the metrics monitoring endpoint.
|
||||
"""
|
||||
resp = requests.get(metrics_url, timeout=5)
|
||||
|
||||
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
|
||||
assert "text/plain" in resp.headers["Content-Type"], "Content-Type is not text/plain"
|
||||
|
||||
# Parse Prometheus metrics data
|
||||
metrics_data = resp.text
|
||||
lines = metrics_data.split("\n")
|
||||
|
||||
metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
|
||||
|
||||
# 断言 具体值
|
||||
num_requests_running_found = False
|
||||
num_requests_waiting_found = False
|
||||
time_to_first_token_seconds_sum_found = False
|
||||
time_per_output_token_seconds_sum_found = False
|
||||
e2e_request_latency_seconds_sum_found = False
|
||||
request_inference_time_seconds_sum_found = False
|
||||
request_queue_time_seconds_sum_found = False
|
||||
request_prefill_time_seconds_sum_found = False
|
||||
request_decode_time_seconds_sum_found = False
|
||||
prompt_tokens_total_found = False
|
||||
generation_tokens_total_found = False
|
||||
request_prompt_tokens_sum_found = False
|
||||
request_generation_tokens_sum_found = False
|
||||
gpu_cache_usage_perc_found = False
|
||||
request_params_max_tokens_sum_found = False
|
||||
request_success_total_found = False
|
||||
|
||||
for line in metric_lines:
|
||||
if line.startswith("fastdeploy:num_requests_running"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "num_requests_running 值错误"
|
||||
num_requests_running_found = True
|
||||
elif line.startswith("fastdeploy:num_requests_waiting"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
num_requests_waiting_found = True
|
||||
assert float(value) >= 0, "num_requests_waiting 值错误"
|
||||
elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
|
||||
time_to_first_token_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
|
||||
time_per_output_token_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
|
||||
e2e_request_latency_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
|
||||
request_inference_time_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
|
||||
request_queue_time_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
|
||||
request_prefill_time_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
|
||||
request_decode_time_seconds_sum_found = True
|
||||
elif line.startswith("fastdeploy:prompt_tokens_total"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "prompt_tokens_total 值错误"
|
||||
prompt_tokens_total_found = True
|
||||
elif line.startswith("fastdeploy:generation_tokens_total"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "generation_tokens_total 值错误"
|
||||
generation_tokens_total_found = True
|
||||
elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
|
||||
request_prompt_tokens_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_generation_tokens_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_generation_tokens_sum 值错误"
|
||||
request_generation_tokens_sum_found = True
|
||||
elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
|
||||
gpu_cache_usage_perc_found = True
|
||||
elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
|
||||
request_params_max_tokens_sum_found = True
|
||||
elif line.startswith("fastdeploy:request_success_total"):
|
||||
_, value = line.rsplit(" ", 1)
|
||||
assert float(value) >= 0, "request_success_total 值错误"
|
||||
request_success_total_found = True
|
||||
|
||||
assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
|
||||
assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
|
||||
assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
|
||||
assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
|
||||
assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
|
||||
assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
|
||||
assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
|
||||
assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
|
||||
assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
|
||||
assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
|
||||
assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
|
||||
assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
|
||||
assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
|
||||
assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
|
||||
assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
|
||||
assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client chat.completions Test
|
||||
# ==========================
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client():
|
||||
ip = "0.0.0.0"
|
||||
service_http_port = str(FD_API_PORT)
|
||||
client = openai.Client(
|
||||
base_url=f"http://{ip}:{service_http_port}/v1",
|
||||
api_key="EMPTY_API_KEY",
|
||||
)
|
||||
return client
|
||||
|
||||
|
||||
# Non-streaming test
|
||||
def test_non_streaming_chat(openai_client):
|
||||
"""Test non-streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=1024,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "content")
|
||||
|
||||
|
||||
# Streaming test
|
||||
def test_streaming_chat(openai_client, capsys):
|
||||
"""Test streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
||||
},
|
||||
{"role": "user", "content": "OK, tell more."},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=1024,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
output = []
|
||||
for chunk in response:
|
||||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||||
output.append(chunk.choices[0].delta.content)
|
||||
assert len(output) > 2
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client completions Test
|
||||
# ==========================
|
||||
|
||||
|
||||
def test_non_streaming(openai_client):
|
||||
"""Test non-streaming chat functionality with the local service"""
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=1024,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Assertions to check the response structure
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
|
||||
|
||||
def test_streaming(openai_client, capsys):
|
||||
"""Test streaming functionality with the local service"""
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=1024,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Collect streaming output
|
||||
output = []
|
||||
for chunk in response:
|
||||
output.append(chunk.choices[0].text)
|
||||
assert len(output) > 0
|
||||
|
||||
|
||||
def test_profile_reset_block_num():
|
||||
"""测试profile reset_block_num功能,与baseline diff不能超过5%"""
|
||||
log_file = "./log/config.log"
|
||||
baseline = 32562
|
||||
|
||||
if not os.path.exists(log_file):
|
||||
pytest.fail(f"Log file not found: {log_file}")
|
||||
|
||||
with open(log_file, "r") as f:
|
||||
log_lines = f.readlines()
|
||||
|
||||
target_line = None
|
||||
for line in log_lines:
|
||||
if "Reset block num" in line:
|
||||
target_line = line.strip()
|
||||
break
|
||||
|
||||
if target_line is None:
|
||||
pytest.fail("日志中没有Reset block num信息")
|
||||
|
||||
match = re.search(r"total_block_num:(\d+)", target_line)
|
||||
if not match:
|
||||
pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
|
||||
|
||||
try:
|
||||
actual_value = int(match.group(1))
|
||||
except ValueError:
|
||||
pytest.fail(f"Invalid number format: {match.group(1)}")
|
||||
|
||||
lower_bound = baseline * (1 - 0.05)
|
||||
upper_bound = baseline * (1 + 0.05)
|
||||
print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
|
||||
|
||||
assert lower_bound <= actual_value <= upper_bound, (
|
||||
f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
|
||||
f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
|
||||
)
|
||||
Reference in New Issue
Block a user