mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
@@ -10,7 +10,7 @@
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/scrfd_500m_bnkps_shape640x640.zip
|
||||
unzip scrfd_500m_bnkps_shape640x640.zip
|
||||
python /Path/To/FastDeploy/tools/rknpu2/export.py \
|
||||
--config_path tools/rknpu2/config/scrfd.yaml \
|
||||
--config_path tools/rknpu2/config/scrfd_quantized.yaml \
|
||||
--target_platform rk3588
|
||||
```
|
||||
|
||||
|
@@ -1,36 +1,15 @@
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 3.10)
|
||||
project(rknpu_test)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
set(FASTDEPLOY_INSTALL_DIR "thirdpartys/fastdeploy-0.7.0")
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeployConfig.cmake)
|
||||
include_directories(${FastDeploy_INCLUDE_DIRS})
|
||||
add_executable(rknpu_test infer.cc)
|
||||
target_link_libraries(rknpu_test
|
||||
${FastDeploy_LIBS}
|
||||
)
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/build/install)
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
install(TARGETS rknpu_test DESTINATION ./)
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
|
||||
install(DIRECTORY model DESTINATION ./)
|
||||
install(DIRECTORY images DESTINATION ./)
|
||||
|
||||
file(GLOB FASTDEPLOY_LIBS ${FASTDEPLOY_INSTALL_DIR}/lib/*)
|
||||
message("${FASTDEPLOY_LIBS}")
|
||||
install(PROGRAMS ${FASTDEPLOY_LIBS} DESTINATION lib)
|
||||
|
||||
file(GLOB ONNXRUNTIME_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/onnxruntime/lib/*)
|
||||
install(PROGRAMS ${ONNXRUNTIME_LIBS} DESTINATION lib)
|
||||
|
||||
install(DIRECTORY ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/opencv/lib DESTINATION ./)
|
||||
|
||||
file(GLOB PADDLETOONNX_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/paddle2onnx/lib/*)
|
||||
install(PROGRAMS ${PADDLETOONNX_LIBS} DESTINATION lib)
|
||||
|
||||
file(GLOB RKNPU2_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/rknpu2_runtime/RK3588/lib/*)
|
||||
install(PROGRAMS ${RKNPU2_LIBS} DESTINATION lib)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
||||
|
@@ -1,66 +1,37 @@
|
||||
[English](README.md) | 简体中文
|
||||
# SCRFD C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成SCRFD在NPU加速部署的示例。
|
||||
本目录下提供`infer.cc`在RK356X上,快速完成SCRFD在NPU加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤:
|
||||
|
||||
1. 软硬件环境满足要求
|
||||
2. 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库
|
||||
|
||||
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
|
||||
|
||||
## 生成基本目录文件
|
||||
|
||||
该例程由以下几个部分组成
|
||||
```text
|
||||
.
|
||||
├── CMakeLists.txt
|
||||
├── build # 编译文件夹
|
||||
├── image # 存放图片的文件夹
|
||||
├── infer.cc
|
||||
├── model # 存放模型文件的文件夹
|
||||
└── thirdpartys # 存放sdk的文件夹
|
||||
```
|
||||
|
||||
首先需要先生成目录结构
|
||||
```bash
|
||||
mkdir build
|
||||
mkdir images
|
||||
mkdir model
|
||||
mkdir thirdpartys
|
||||
```
|
||||
以上步骤请参考[RK2代NPU文档导航](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
|
||||
|
||||
## 编译
|
||||
|
||||
### 编译并拷贝SDK到thirdpartys文件夹
|
||||
|
||||
请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)仓库编译SDK,编译完成后,将在build目录下生成
|
||||
fastdeploy-0.7.0目录,请移动它至thirdpartys目录下.
|
||||
|
||||
### 拷贝模型文件至model文件夹
|
||||
请参考[SCRFD模型转换文档](../README.md)转换SCRFD ONNX模型到RKNN模型,再将RKNN模型移动到model文件夹。
|
||||
|
||||
### 准备测试图片至image文件夹
|
||||
```bash
|
||||
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
|
||||
cp test_lite_face_detector_3.jpg ./images
|
||||
```
|
||||
|
||||
### 编译example
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-aarch64-rk356X-x.x.x.tgz
|
||||
tar -xzvf fastdeploy-linux-aarch64-rk356X-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-aarch64-rk356X
|
||||
make -j8
|
||||
make install
|
||||
```
|
||||
|
||||
## 运行例程
|
||||
|
||||
```bash
|
||||
cd ./build/install
|
||||
export LD_LIBRARY_PATH=${PWD}/lib:${LD_LIBRARY_PATH}
|
||||
./rknpu_test
|
||||
#下载官方转换好的SCRFD模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/scrfd_500m_bnkps_shape640x640_rknpu2.zip
|
||||
unzip scrfd_500m_bnkps_shape640x640_rknpu2.zip
|
||||
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
|
||||
./infer_demo scrfd_500m_bnkps_shape640x640_rknpu2/scrfd_500m_bnkps_shape640x640_rk3568_quantized.rknn \
|
||||
test_lite_face_detector_3.jpg \
|
||||
1
|
||||
```
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
|
@@ -1,16 +1,16 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640.onnx";
|
||||
void ONNXInfer(const std::string& model_file, const std::string& image_file) {
|
||||
std::string params_file;
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto format = fastdeploy::ModelFormat::ONNX;
|
||||
|
||||
auto model = fastdeploy::vision::facedet::SCRFD(
|
||||
model_file, params_file, option, format);
|
||||
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file,
|
||||
option, format);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
@@ -31,19 +31,17 @@ void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
cv::imwrite("infer_onnx.jpg", vis_im);
|
||||
std::cout
|
||||
<< "Visualized result saved in ./infer_onnx.jpg"
|
||||
<< std::endl;
|
||||
std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640_rk3588.rknn";
|
||||
void RKNPU2Infer(const std::string& model_file, const std::string& image_file) {
|
||||
std::string params_file;
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseRKNPU2();
|
||||
auto format = fastdeploy::ModelFormat::RKNN;
|
||||
|
||||
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file, option, format);
|
||||
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file,
|
||||
option, format);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
@@ -66,21 +64,25 @@ void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
cv::imwrite("infer_rknn.jpg", vis_im);
|
||||
std::cout
|
||||
<< "Visualized result saved in ./infer_rknn.jpg"
|
||||
<< std::endl;
|
||||
std::cout << "Visualized result saved in ./infer_rknn.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 3) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
|
||||
<< "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
"e.g ./infer_model scrfd_500m_bnkps_shape640x640.onnx ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, "
|
||||
"0: run with cpu; 1: run with rknpu2."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
ONNXInfer(argv[1], argv[2]);
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
ONNXInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -11,5 +11,5 @@ std:
|
||||
model_path: ./scrfd_500m_bnkps_shape640x640.onnx
|
||||
outputs_nodes:
|
||||
do_quantization: True
|
||||
dataset: "./datasets.txt"
|
||||
dataset: "./dataset.txt"
|
||||
output_folder: "./"
|
15
tools/rknpu2/config/scrfd_unquantized.yaml
Normal file
15
tools/rknpu2/config/scrfd_unquantized.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
mean:
|
||||
-
|
||||
- 128.5
|
||||
- 128.5
|
||||
- 128.5
|
||||
std:
|
||||
-
|
||||
- 128.5
|
||||
- 128.5
|
||||
- 128.5
|
||||
model_path: ./scrfd_500m_bnkps_shape640x640.onnx
|
||||
outputs_nodes:
|
||||
do_quantization: False
|
||||
dataset: "./dataset.txt"
|
||||
output_folder: "./"
|
@@ -37,17 +37,24 @@ if __name__ == "__main__":
|
||||
# Config
|
||||
mean_values = yaml_config["mean"]
|
||||
std_values = yaml_config["std"]
|
||||
model.config(mean_values=mean_values, std_values=std_values, target_platform=config.target_platform)
|
||||
model.config(
|
||||
mean_values=mean_values,
|
||||
std_values=std_values,
|
||||
target_platform=config.target_platform)
|
||||
|
||||
# Load ONNX model
|
||||
if yaml_config["outputs_nodes"] is None:
|
||||
ret = model.load_onnx(model=yaml_config["model_path"])
|
||||
else:
|
||||
ret = model.load_onnx(model=yaml_config["model_path"], outputs=yaml_config["outputs_nodes"])
|
||||
ret = model.load_onnx(
|
||||
model=yaml_config["model_path"],
|
||||
outputs=yaml_config["outputs_nodes"])
|
||||
assert ret == 0, "Load model failed!"
|
||||
|
||||
# Build model
|
||||
ret = model.build(do_quantization=yaml_config["do_quantization"], dataset=yaml_config["dataset"])
|
||||
ret = model.build(
|
||||
do_quantization=yaml_config["do_quantization"],
|
||||
dataset=yaml_config["dataset"])
|
||||
assert ret == 0, "Build model failed!"
|
||||
|
||||
# Init Runtime
|
||||
@@ -60,7 +67,11 @@ if __name__ == "__main__":
|
||||
|
||||
model_base_name = os.path.basename(yaml_config["model_path"]).split(".")[0]
|
||||
model_device_name = config.target_platform.lower()
|
||||
model_save_name = model_base_name + "_" + model_device_name + ".rknn"
|
||||
ret = model.export_rknn(os.path.join(yaml_config["output_folder"], model_save_name))
|
||||
if yaml_config["do_quantization"]:
|
||||
model_save_name = model_base_name + "_" + model_device_name + "_quantized" + ".rknn"
|
||||
else:
|
||||
model_save_name = model_base_name + "_" + model_device_name + "_unquantized" + ".rknn"
|
||||
ret = model.export_rknn(
|
||||
os.path.join(yaml_config["output_folder"], model_save_name))
|
||||
assert ret == 0, "Export rknn model failed!"
|
||||
print("Export OK!")
|
||||
|
Reference in New Issue
Block a user