mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
88 lines
2.6 KiB
C++
88 lines
2.6 KiB
C++
#include <iostream>
|
|
#include <string>
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void ONNXInfer(const std::string& model_file, const std::string& image_file) {
|
|
std::string params_file;
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu();
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
|
|
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file,
|
|
option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::FaceDetectionResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::Visualize::VisFaceDetection(im, res);
|
|
tc.End();
|
|
tc.PrintInfo("SCRFD in ONNX");
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
cv::imwrite("infer_onnx.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl;
|
|
}
|
|
|
|
void RKNPU2Infer(const std::string& model_file, const std::string& image_file) {
|
|
std::string params_file;
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseRKNPU2();
|
|
auto format = fastdeploy::ModelFormat::RKNN;
|
|
|
|
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file,
|
|
option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
model.DisableNormalize();
|
|
model.DisablePermute();
|
|
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::FaceDetectionResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
|
|
tc.End();
|
|
tc.PrintInfo("SCRFD in RKNN");
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
cv::imwrite("infer_rknn.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./infer_rknn.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model path/to/image run_option, "
|
|
"e.g ./infer_model scrfd_500m_bnkps_shape640x640.onnx ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, "
|
|
"0: run with cpu; 1: run with rknpu2."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (std::atoi(argv[3]) == 0) {
|
|
ONNXInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 1) {
|
|
RKNPU2Infer(argv[1], argv[2]);
|
|
}
|
|
return 0;
|
|
} |