mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Model] Add stable diffusion model based on fastdeploy (#297)
* Add stable diffusion model base on fastdeploy * Add sd infer * pipelines->multimodal * add create_ort_runtime * use fp16 input * fix pil * Add optimize unet model * add hf license * Add workspace args * Add profile func * Add schedulers * usrelace torch.Tenosr byp.ndarray * Add readme * Add trt shape setting * add dynamic shape * Add dynamic shape for stable diffusion * fix max shape setting * rename tensorrt file suffix * update dynamic shape setting * Add scheduler output * Add inference_steps and benchmark steps * add diffuser benchmark * Add paddle infer script * Rename 1 * Rename infer.py to torch_onnx_infer.py * Add export torch to onnx model * renmove export model * Add paddle export model for diffusion * Fix export model * mv torch onnx infer to infer * Fix export model * Fix infer * modif create_trt_runtime create_ort_runtime * update export torch * update requirements * add paddle inference backend * Fix unet pp run * remove print * Add paddle model export and infer * Add device id * remove profile to utils * Add -1 device id * Add safety checker args * remove safety checker temporarily * Add export model description * Add predict description * Fix readme * Fix device_id description * add timestep shape * add use fp16 precision * move use gpu * Add EulerAncestralDiscreteScheduler * Use EulerAncestralDiscreteScheduler with v1-5 model * Add export model readme * Add link of exported model * Update scheduler on README * Addd stable-diffusion-v1-5
This commit is contained in:
156
examples/multimodal/stable_diffusion/config_utils.py
Normal file
156
examples/multimodal/stable_diffusion/config_utils.py
Normal file
@@ -0,0 +1,156 @@
|
||||
# Copyright 2022 The HuggingFace Inc. team.
|
||||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import functools
|
||||
import inspect
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Dict, Tuple, Union
|
||||
|
||||
|
||||
class ConfigMixin:
|
||||
r"""
|
||||
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
|
||||
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
|
||||
- [`~ConfigMixin.from_config`]
|
||||
- [`~ConfigMixin.save_config`]
|
||||
|
||||
Class attributes:
|
||||
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
||||
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
||||
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
||||
overridden by parent class).
|
||||
"""
|
||||
config_name = None
|
||||
ignore_for_config = []
|
||||
|
||||
def register_to_config(self, **kwargs):
|
||||
if self.config_name is None:
|
||||
raise NotImplementedError(
|
||||
f"Make sure that {self.__class__} has defined a class name `config_name`"
|
||||
)
|
||||
kwargs["_class_name"] = self.__class__.__name__
|
||||
|
||||
# Special case for `kwargs` used in deprecation warning added to schedulers
|
||||
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
||||
# or solve in a more general way.
|
||||
kwargs.pop("kwargs", None)
|
||||
for key, value in kwargs.items():
|
||||
try:
|
||||
setattr(self, key, value)
|
||||
except AttributeError as err:
|
||||
logger.error(f"Can't set {key} with value {value} for {self}")
|
||||
raise err
|
||||
|
||||
if not hasattr(self, "_internal_dict"):
|
||||
internal_dict = kwargs
|
||||
else:
|
||||
previous_dict = dict(self._internal_dict)
|
||||
internal_dict = { ** self._internal_dict, ** kwargs}
|
||||
logger.debug(
|
||||
f"Updating config from {previous_dict} to {internal_dict}")
|
||||
|
||||
self._internal_dict = FrozenDict(internal_dict)
|
||||
|
||||
@property
|
||||
def config(self) -> Dict[str, Any]:
|
||||
return self._internal_dict
|
||||
|
||||
|
||||
class FrozenDict(OrderedDict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
for key, value in self.items():
|
||||
setattr(self, key, value)
|
||||
|
||||
self.__frozen = True
|
||||
|
||||
def __delitem__(self, *args, **kwargs):
|
||||
raise Exception(
|
||||
f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance."
|
||||
)
|
||||
|
||||
def setdefault(self, *args, **kwargs):
|
||||
raise Exception(
|
||||
f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance."
|
||||
)
|
||||
|
||||
def pop(self, *args, **kwargs):
|
||||
raise Exception(
|
||||
f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
||||
|
||||
def update(self, *args, **kwargs):
|
||||
raise Exception(
|
||||
f"You cannot use ``update`` on a {self.__class__.__name__} instance."
|
||||
)
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if hasattr(self, "__frozen") and self.__frozen:
|
||||
raise Exception(
|
||||
f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance."
|
||||
)
|
||||
super().__setattr__(name, value)
|
||||
|
||||
def __setitem__(self, name, value):
|
||||
if hasattr(self, "__frozen") and self.__frozen:
|
||||
raise Exception(
|
||||
f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance."
|
||||
)
|
||||
super().__setitem__(name, value)
|
||||
|
||||
|
||||
def register_to_config(init):
|
||||
r"""
|
||||
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
||||
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
||||
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
||||
|
||||
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
||||
"""
|
||||
|
||||
@functools.wraps(init)
|
||||
def inner_init(self, *args, **kwargs):
|
||||
# Ignore private kwargs in the init.
|
||||
init_kwargs = {
|
||||
k: v
|
||||
for k, v in kwargs.items() if not k.startswith("_")
|
||||
}
|
||||
init(self, *args, **init_kwargs)
|
||||
if not isinstance(self, ConfigMixin):
|
||||
raise RuntimeError(
|
||||
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
||||
"not inherit from `ConfigMixin`.")
|
||||
ignore = getattr(self, "ignore_for_config", [])
|
||||
# Get positional arguments aligned with kwargs
|
||||
new_kwargs = {}
|
||||
signature = inspect.signature(init)
|
||||
parameters = {
|
||||
name: p.default
|
||||
for i, (name, p) in enumerate(signature.parameters.items())
|
||||
if i > 0 and name not in ignore
|
||||
}
|
||||
for arg, name in zip(args, parameters.keys()):
|
||||
new_kwargs[name] = arg
|
||||
|
||||
# Then add all kwargs
|
||||
new_kwargs.update({
|
||||
k: init_kwargs.get(k, default)
|
||||
for k, default in parameters.items()
|
||||
if k not in ignore and k not in new_kwargs
|
||||
})
|
||||
getattr(self, "register_to_config")(**new_kwargs)
|
||||
|
||||
return inner_init
|
Reference in New Issue
Block a user