mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add stable diffusion model base on fastdeploy * Add sd infer * pipelines->multimodal * add create_ort_runtime * use fp16 input * fix pil * Add optimize unet model * add hf license * Add workspace args * Add profile func * Add schedulers * usrelace torch.Tenosr byp.ndarray * Add readme * Add trt shape setting * add dynamic shape * Add dynamic shape for stable diffusion * fix max shape setting * rename tensorrt file suffix * update dynamic shape setting * Add scheduler output * Add inference_steps and benchmark steps * add diffuser benchmark * Add paddle infer script * Rename 1 * Rename infer.py to torch_onnx_infer.py * Add export torch to onnx model * renmove export model * Add paddle export model for diffusion * Fix export model * mv torch onnx infer to infer * Fix export model * Fix infer * modif create_trt_runtime create_ort_runtime * update export torch * update requirements * add paddle inference backend * Fix unet pp run * remove print * Add paddle model export and infer * Add device id * remove profile to utils * Add -1 device id * Add safety checker args * remove safety checker temporarily * Add export model description * Add predict description * Fix readme * Fix device_id description * add timestep shape * add use fp16 precision * move use gpu * Add EulerAncestralDiscreteScheduler * Use EulerAncestralDiscreteScheduler with v1-5 model * Add export model readme * Add link of exported model * Update scheduler on README * Addd stable-diffusion-v1-5
157 lines
5.8 KiB
Python
157 lines
5.8 KiB
Python
# Copyright 2022 The HuggingFace Inc. team.
|
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import functools
|
|
import inspect
|
|
from collections import OrderedDict
|
|
from typing import Any, Dict, Tuple, Union
|
|
|
|
|
|
class ConfigMixin:
|
|
r"""
|
|
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
|
|
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
|
|
- [`~ConfigMixin.from_config`]
|
|
- [`~ConfigMixin.save_config`]
|
|
|
|
Class attributes:
|
|
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
|
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
|
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
|
overridden by parent class).
|
|
"""
|
|
config_name = None
|
|
ignore_for_config = []
|
|
|
|
def register_to_config(self, **kwargs):
|
|
if self.config_name is None:
|
|
raise NotImplementedError(
|
|
f"Make sure that {self.__class__} has defined a class name `config_name`"
|
|
)
|
|
kwargs["_class_name"] = self.__class__.__name__
|
|
|
|
# Special case for `kwargs` used in deprecation warning added to schedulers
|
|
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
|
# or solve in a more general way.
|
|
kwargs.pop("kwargs", None)
|
|
for key, value in kwargs.items():
|
|
try:
|
|
setattr(self, key, value)
|
|
except AttributeError as err:
|
|
logger.error(f"Can't set {key} with value {value} for {self}")
|
|
raise err
|
|
|
|
if not hasattr(self, "_internal_dict"):
|
|
internal_dict = kwargs
|
|
else:
|
|
previous_dict = dict(self._internal_dict)
|
|
internal_dict = { ** self._internal_dict, ** kwargs}
|
|
logger.debug(
|
|
f"Updating config from {previous_dict} to {internal_dict}")
|
|
|
|
self._internal_dict = FrozenDict(internal_dict)
|
|
|
|
@property
|
|
def config(self) -> Dict[str, Any]:
|
|
return self._internal_dict
|
|
|
|
|
|
class FrozenDict(OrderedDict):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
for key, value in self.items():
|
|
setattr(self, key, value)
|
|
|
|
self.__frozen = True
|
|
|
|
def __delitem__(self, *args, **kwargs):
|
|
raise Exception(
|
|
f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance."
|
|
)
|
|
|
|
def setdefault(self, *args, **kwargs):
|
|
raise Exception(
|
|
f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance."
|
|
)
|
|
|
|
def pop(self, *args, **kwargs):
|
|
raise Exception(
|
|
f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
|
|
|
def update(self, *args, **kwargs):
|
|
raise Exception(
|
|
f"You cannot use ``update`` on a {self.__class__.__name__} instance."
|
|
)
|
|
|
|
def __setattr__(self, name, value):
|
|
if hasattr(self, "__frozen") and self.__frozen:
|
|
raise Exception(
|
|
f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance."
|
|
)
|
|
super().__setattr__(name, value)
|
|
|
|
def __setitem__(self, name, value):
|
|
if hasattr(self, "__frozen") and self.__frozen:
|
|
raise Exception(
|
|
f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance."
|
|
)
|
|
super().__setitem__(name, value)
|
|
|
|
|
|
def register_to_config(init):
|
|
r"""
|
|
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
|
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
|
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
|
|
|
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
|
"""
|
|
|
|
@functools.wraps(init)
|
|
def inner_init(self, *args, **kwargs):
|
|
# Ignore private kwargs in the init.
|
|
init_kwargs = {
|
|
k: v
|
|
for k, v in kwargs.items() if not k.startswith("_")
|
|
}
|
|
init(self, *args, **init_kwargs)
|
|
if not isinstance(self, ConfigMixin):
|
|
raise RuntimeError(
|
|
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
|
"not inherit from `ConfigMixin`.")
|
|
ignore = getattr(self, "ignore_for_config", [])
|
|
# Get positional arguments aligned with kwargs
|
|
new_kwargs = {}
|
|
signature = inspect.signature(init)
|
|
parameters = {
|
|
name: p.default
|
|
for i, (name, p) in enumerate(signature.parameters.items())
|
|
if i > 0 and name not in ignore
|
|
}
|
|
for arg, name in zip(args, parameters.keys()):
|
|
new_kwargs[name] = arg
|
|
|
|
# Then add all kwargs
|
|
new_kwargs.update({
|
|
k: init_kwargs.get(k, default)
|
|
for k, default in parameters.items()
|
|
if k not in ignore and k not in new_kwargs
|
|
})
|
|
getattr(self, "register_to_config")(**new_kwargs)
|
|
|
|
return inner_init
|