[CI]【Hackathon 9th Sprint Example NO 16】功能模块 fastdeploy/input/ernie4_5_vl_processor/process.py 单测补充 (#5264)

* test: add unit tests for process.py (NO.16)

* update

* update filename

* update filename

* update

* update

* fix failed  testcases

* simplify the code

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
This commit is contained in:
kesmeey
2025-12-08 14:30:15 +08:00
committed by GitHub
parent 33e4f88e45
commit d1bd40d44c

View File

@@ -1,7 +1,8 @@
import unittest
import unittest
from unittest.mock import MagicMock, patch
import numpy as np
from PIL import Image
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
from fastdeploy.input.ernie4_5_vl_processor import Ernie4_5_VLProcessor
@@ -14,12 +15,12 @@ from fastdeploy.input.utils import IDS_TYPE_FLAG
class TestErnie4_5_vl_ProcessorProcessResponseDictStreaming(unittest.TestCase):
def setUp(self):
# 创建 Ernie4_5Processor 实例的模拟对象
# Create mock object for Ernie4_5Processor instance
with patch.object(Ernie4_5_VLProcessor, "__init__", return_value=None) as mock_init:
self.processor = Ernie4_5_VLProcessor("model_path")
mock_init.side_effect = lambda *args, **kwargs: print(f"__init__ called with {args}, {kwargs}")
# 设置必要的属性
# Set necessary attributes
self.processor.tokenizer = MagicMock()
self.processor.tokenizer.eos_token_id = 1
self.processor.decode_status = {}
@@ -32,7 +33,7 @@ class TestErnie4_5_vl_ProcessorProcessResponseDictStreaming(unittest.TestCase):
self.processor.ernie4_5_processor = MagicMock()
self.processor.pack_outputs = MagicMock()
# 模拟 ids2tokens 方法
# Mock ids2tokens method
def mock_ids2tokens(token_ids, task_id):
self.processor.decode_status[task_id] = "mock_decode_status"
return "delta_text", [2, 3], "previous_texts"
@@ -50,13 +51,13 @@ class TestErnie4_5_vl_ProcessorProcessResponseDictStreaming(unittest.TestCase):
self.processor._apply_default_parameters = mock_apply_default_parameters
# 模拟推理解析器
# Mock reasoning parser
self.mock_reasoning_parser = MagicMock()
self.mock_reasoning_parser.__class__.__name__ = "ErnieX1ReasoningParser"
# self.mock_reasoning_parser.extract_reasoning_content_streaming.return_value = ("reasoning", "text")
self.processor.reasoning_parser = self.mock_reasoning_parser
# 模拟工具解析器
# Mock tool parser
self.mock_tool_parser = MagicMock()
self.mock_tool_parser.extract_tool_calls_streaming.return_value = None
self.mock_tool_parser_obj = MagicMock()
@@ -148,6 +149,8 @@ class TestDataProcessorTargetMethods(unittest.TestCase):
self.mock_tokenizer.convert_tokens_to_ids.side_effect = self._mock_convert_tokens_to_ids
self.mock_tokenizer.chat_template = "mock_template"
self.mock_tokenizer.apply_chat_template.return_value = "User: Hello<|image@placeholder|>"
# Mock encode method for _add_text
self.mock_tokenizer.encode = MagicMock(return_value={"input_ids": [1, 2, 3]})
def mock_load_tokenizer(dp_instance):
dp_instance.tokenizer = self.mock_tokenizer
@@ -167,8 +170,16 @@ class TestDataProcessorTargetMethods(unittest.TestCase):
self.data_processor.video_end_id = 1005
self.data_processor.role_prefixes = {"user": "User: ", "assistant": "Assistant: "}
self.data_processor.enable_processor_cache = False
# Note: extract_mm_items is not mocked by default, only when needed
self.data_processor.extract_mm_items = MagicMock(return_value=([], [], [], [], None, [], []))
def _restore_real_extract_mm_items(self):
"""Helper method to restore real extract_mm_items method for testing"""
from fastdeploy.input.ernie4_5_vl_processor.process import DataProcessor
original_extract_mm_items = DataProcessor.extract_mm_items
self.data_processor.extract_mm_items = original_extract_mm_items.__get__(self.data_processor, DataProcessor)
def _mock_convert_tokens_to_ids(self, token):
token_id_map = {
"<|begin_of_sentence|>": 101,
@@ -195,7 +206,7 @@ class TestDataProcessorTargetMethods(unittest.TestCase):
self.assertEqual(
outputs["input_ids"],
test_prompt_token_ids,
f"input_ids 不匹配:实际{outputs['input_ids']},预期[{test_prompt_token_ids}]",
f"input_ids mismatch: actual {outputs['input_ids']}, expected {test_prompt_token_ids}",
)
self.assertEqual(outputs["token_type_ids"], [IDS_TYPE_FLAG["text"]] * prompt_len)
@@ -559,6 +570,557 @@ class TestDataProcessorTargetMethods(unittest.TestCase):
self.data_processor.prompt_token_ids2outputs(request)
self.assertIn("video tokens num not match the size", str(ctx.exception))
def test_extract_mm_items(self):
"""Test extract_mm_items with various scenarios: basic items, video, and missing data error"""
self._restore_real_extract_mm_items()
# Test basic multimodal items (image + video)
request = {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Hello"},
{"type": "image", "data": Image.new("RGB", (224, 224)), "uuid": "img1"},
{"type": "video", "data": [Image.new("RGB", (224, 224))], "uuid": "vid1"},
],
}
]
}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = request["messages"]
images, videos, image_uuid, video_uuid, dealer, missing_idx, mm_items = (
self.data_processor.extract_mm_items(request)
)
self.assertEqual(len(images), 1)
self.assertEqual(len(videos), 1)
self.assertEqual(image_uuid[0], "img1")
self.assertEqual(video_uuid[0], "vid1")
self.assertEqual(len(mm_items), 2)
# Test missing data error when cache is disabled
self.data_processor.enable_processor_cache = False
request = {"messages": [{"role": "user", "content": [{"type": "image", "uuid": "img1"}]}]}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = request["messages"]
with self.assertRaises(ValueError) as ctx:
self.data_processor.extract_mm_items(request)
self.assertIn("Missing items cannot be retrieved", str(ctx.exception))
class TestDataProcessor(unittest.TestCase):
def setUp(self):
"""Set up test environment"""
self.mock_tokenizer = MagicMock()
def mock_convert_tokens_to_ids(x):
if isinstance(x, list):
return [hash(str(token)) % 10000 for token in x]
return hash(str(x)) % 10000
self.mock_tokenizer.convert_tokens_to_ids = MagicMock(side_effect=mock_convert_tokens_to_ids)
self.mock_tokenizer.encode = MagicMock(return_value={"input_ids": [1, 2, 3]})
self.mock_tokenizer.decode = MagicMock(return_value="decoded_text")
self.mock_tokenizer.tokenize = MagicMock(return_value=["token1", "token2"])
self.mock_tokenizer.ignored_index = -100
self.mock_tokenizer.chat_template = MagicMock()
self.mock_tokenizer.apply_chat_template = MagicMock(return_value="formatted_prompt")
self.mock_image_preprocessor = MagicMock()
self.mock_image_preprocessor.get_smarted_resize = MagicMock(return_value=((224, 224), (16, 16)))
self.mock_image_preprocessor.preprocess = MagicMock(
return_value={
"pixel_values": np.random.rand(256, 3 * 14 * 14).astype(np.float32),
"image_grid_thw": np.array([[1, 16, 16]]),
}
)
self.mock_image_preprocessor.from_pretrained = MagicMock(return_value=self.mock_image_preprocessor)
with patch(
"fastdeploy.input.ernie4_5_vl_processor.process.AdaptiveImageProcessor",
self.mock_image_preprocessor,
):
with patch("fastdeploy.input.ernie4_5_vl_processor.process.Ernie4_5Tokenizer") as mock_tokenizer_class:
mock_tokenizer_class.from_pretrained = MagicMock(return_value=self.mock_tokenizer)
mock_tokenizer_class.resource_files_names = {"vocab_file": "tokenizer.model"}
with patch("os.path.exists", return_value=True):
self.processor = DataProcessor(
tokenizer_name="test_model",
image_preprocessor_name="test_model",
)
def _create_outputs(self):
"""Helper to create outputs dict"""
return {
"input_ids": [],
"token_type_ids": [],
"position_ids": [],
"images": [],
"grid_thw": [],
"image_type_ids": [],
"mm_positions": [],
"mm_hashes": [],
"cur_position": 0,
"num_input_image_tokens": 0,
"num_input_video_tokens": 0,
}
def _mock_video_processing(self, mock_frames=None):
"""Helper to mock video processing"""
if mock_frames is None:
mock_frames = [Image.new("RGB", (224, 224)) for _ in range(4)]
mock_read = patch("fastdeploy.input.ernie4_5_vl_processor.process.read_video_decord")
mock_frames_read = patch("fastdeploy.input.ernie4_5_vl_processor.process.read_frames_decord")
mock_render = patch("fastdeploy.input.ernie4_5_vl_processor.process.render_frame_timestamp")
return mock_read, mock_frames_read, mock_render, mock_frames
def _setup_video_mocks(self, mock_read, mock_frames_read, mock_render, mock_frames):
"""Setup video processing mocks"""
mock_read.return_value = (None, {"duration": 2.0}, "test_path")
mock_frames_read.return_value = (
[np.array(f) for f in mock_frames],
None,
[0.0, 0.5, 1.0, 1.5] if len(mock_frames) == 4 else [float(i) * 0.5 for i in range(len(mock_frames))],
)
mock_render.side_effect = lambda img, ts: (Image.fromarray(img) if isinstance(img, np.ndarray) else img)
self.mock_image_preprocessor.preprocess.return_value = {
"pixel_values_videos": np.random.rand(len(mock_frames), 256, 3 * 14 * 14).astype(np.float32),
"video_grid_thw": np.array([[len(mock_frames), 16, 16]]),
}
def test_train_and_eval(self):
"""Test training and evaluation mode switching"""
self.assertTrue(self.processor.is_training)
self.processor.eval()
self.assertFalse(self.processor.is_training)
self.processor.train()
self.assertTrue(self.processor.is_training)
def test_build_token_type_mapping(self):
"""Test token type mapping construction"""
mapping = self.processor._build_token_type_mapping()
for token in [
self.processor.IMG_START,
self.processor.IMG_END,
self.processor.VID_START,
self.processor.VID_END,
]:
self.assertEqual(mapping[token], IDS_TYPE_FLAG["image"])
self.assertEqual(mapping[self.processor.image_patch_id], IDS_TYPE_FLAG["image"])
def test_add_text_and_special_token(self):
"""Test adding text and special tokens"""
outputs = self._create_outputs()
self.processor._add_text("hello", outputs)
self.assertEqual(len(outputs["input_ids"]), 3)
self.assertEqual(outputs["cur_position"], 3)
outputs2 = self._create_outputs()
self.processor._add_text([1, 2, 3, 4, 5], outputs2)
self.assertEqual(len(outputs2["input_ids"]), 5)
outputs3 = self._create_outputs()
self.processor._add_special_token("<|begin_of_sentence|>", outputs3)
self.processor._add_special_token(12345, outputs3)
self.assertEqual(len(outputs3["input_ids"]), 2)
def test_compute_3d_positions(self):
"""Test 3D position computation"""
pos_ids = self.processor._compute_3d_positions(t=2, h=16, w=16, start_idx=10)
self.assertIsInstance(pos_ids, list)
self.assertGreater(len(pos_ids), 0)
self.assertEqual(len(pos_ids[0]), 3)
pos_ids2 = self.processor._compute_3d_positions(t=1, h=16, w=16, start_idx=0)
expected_len = 1 * (16 // self.processor.spatial_conv_size) ** 2
self.assertEqual(len(pos_ids2), expected_len)
def test_set_video_frame_args_comprehensive(self):
"""Test _set_video_frame_args with various scenarios"""
# Valid cases
result = self.processor._set_video_frame_args(
{
"target_frames": 32,
"fps": -1,
"min_frames": 16,
"max_frames": 64,
"frames_sample": "leading",
},
{"duration": 10.0},
)
self.assertEqual(result["target_frames"], 32)
result = self.processor._set_video_frame_args(
{
"target_frames": -1,
"fps": 2,
"min_frames": 16,
"max_frames": 64,
"frames_sample": "leading",
},
{"duration": 10.0},
)
self.assertIsNotNone(result)
# Error cases
with self.assertRaises(ValueError):
self.processor._set_video_frame_args(
{
"target_frames": -1,
"fps": -1,
"min_frames": 16,
"max_frames": 64,
"frames_sample": "leading",
},
{"duration": 10.0},
)
with self.assertRaises(ValueError):
self.processor._set_video_frame_args(
{
"target_frames": 10,
"fps": 2,
"min_frames": 1,
"max_frames": 100,
"frames_sample": "leading",
},
{"duration": 10.0},
)
with self.assertRaises(ValueError):
self.processor._set_video_frame_args(
{
"target_frames": 5,
"fps": -1,
"min_frames": 10,
"max_frames": 100,
"frames_sample": "leading",
},
{"duration": 10.0},
)
with self.assertRaises(ValueError):
self.processor._set_video_frame_args(
{
"target_frames": 200,
"fps": -1,
"min_frames": 1,
"max_frames": 100,
"frames_sample": "leading",
},
{"duration": 10.0},
)
with self.assertRaises(ValueError):
self.processor._set_video_frame_args(
{
"target_frames": -1,
"fps": 2,
"min_frames": 100,
"max_frames": 10,
"frames_sample": "leading",
},
{"duration": 10.0},
)
# Adjustment cases
result = self.processor._set_video_frame_args(
{
"target_frames": -1,
"fps": 1,
"min_frames": 10,
"max_frames": 100,
"frames_sample": "leading",
},
{"duration": 1.0},
)
self.assertEqual(result["target_frames"], 10)
self.assertEqual(result["fps"], -1)
result = self.processor._set_video_frame_args(
{
"target_frames": -1,
"fps": 10,
"min_frames": 1,
"max_frames": 100,
"frames_sample": "leading",
},
{"duration": 100.0},
)
self.assertEqual(result["target_frames"], 100)
self.assertEqual(result["fps"], -1)
def test_text2ids_comprehensive(self):
"""Test text2ids with various scenarios"""
# Text only
outputs = self.processor.text2ids("Hello world")
self.assertIn("input_ids", outputs)
self.assertEqual(len(outputs["images"]), 0)
# Empty text
outputs = self.processor.text2ids("")
self.assertEqual(len(outputs["input_ids"]), 0)
# With image placeholder
mock_image = Image.new("RGB", (224, 224))
outputs = self.processor.text2ids("Hello <|image@placeholder|> world", images=[mock_image])
self.assertGreater(len(outputs["input_ids"]), 0)
self.assertGreater(len(outputs["images"]), 0)
# With cached image
cached_image = (
np.random.rand(256, 3 * 14 * 14).astype(np.float32),
{"thw": (1, 16, 16)},
)
outputs = self.processor.text2ids(
"Hello <|image@placeholder|> world",
images=[cached_image],
image_uuid=["uuid"],
)
self.assertGreater(len(outputs["input_ids"]), 0)
# Multiple images
outputs = self.processor.text2ids(
"Hello <|image@placeholder|> world <|image@placeholder|> end",
images=[mock_image, mock_image],
)
self.assertEqual(len(outputs["images"]), 2)
# With video placeholder
mock_read, mock_frames_read, mock_render, mock_frames = self._mock_video_processing()
with mock_read as mr, mock_frames_read as mfr, mock_render as mren:
mr.return_value = (None, {"duration": 2.0}, "test_path")
mfr.return_value = (
[np.array(f) for f in mock_frames],
None,
[0.0, 0.5, 1.0, 1.5],
)
mren.side_effect = lambda img, ts: (Image.fromarray(img) if isinstance(img, np.ndarray) else img)
self.mock_image_preprocessor.preprocess.return_value = {
"pixel_values_videos": np.random.rand(4, 256, 3 * 14 * 14).astype(np.float32),
"video_grid_thw": np.array([[4, 16, 16]]),
}
outputs = self.processor.text2ids("Hello <|video@placeholder|> world", videos=["test_video.mp4"])
self.assertGreater(len(outputs["input_ids"]), 0)
# Cached video
cached_video = (
np.random.rand(256, 3 * 14 * 14).astype(np.float32),
{"thw": (4, 16, 16)},
)
outputs = self.processor.text2ids(
"Hello <|video@placeholder|> world",
videos=[cached_video],
video_uuid=["uuid"],
)
self.assertGreater(len(outputs["input_ids"]), 0)
# Video dict format
mock_read, mock_frames_read, mock_render, mock_frames = self._mock_video_processing()
with mock_read as mr, mock_frames_read as mfr, mock_render as mren:
mr.return_value = (None, {"duration": 2.0}, "test_path")
mfr.return_value = (
[np.array(f) for f in mock_frames],
None,
[0.0, 0.5, 1.0, 1.5],
)
mren.side_effect = lambda img, ts: (Image.fromarray(img) if isinstance(img, np.ndarray) else img)
self.mock_image_preprocessor.preprocess.return_value = {
"pixel_values_videos": np.random.rand(4, 256, 3 * 14 * 14).astype(np.float32),
"video_grid_thw": np.array([[4, 16, 16]]),
}
outputs = self.processor.text2ids(
"Hello <|video@placeholder|> world",
videos=[{"video": "test.mp4", "fps": 2}],
)
self.assertGreater(len(outputs["input_ids"]), 0)
# Image and video together
mock_read, mock_frames_read, mock_render, mock_frames = self._mock_video_processing()
with mock_read as mr, mock_frames_read as mfr, mock_render as mren:
mr.return_value = (None, {"duration": 2.0}, "test_path")
mfr.return_value = (
[np.array(f) for f in mock_frames],
None,
[0.0, 0.5, 1.0, 1.5],
)
mren.side_effect = lambda img, ts: (Image.fromarray(img) if isinstance(img, np.ndarray) else img)
self.mock_image_preprocessor.preprocess.side_effect = [
{
"pixel_values": np.random.rand(256, 3 * 14 * 14).astype(np.float32),
"image_grid_thw": np.array([[1, 16, 16]]),
},
{
"pixel_values_videos": np.random.rand(4, 256, 3 * 14 * 14).astype(np.float32),
"video_grid_thw": np.array([[4, 16, 16]]),
},
]
outputs = self.processor.text2ids(
"Hello <|image@placeholder|> world <|video@placeholder|> end",
images=[mock_image],
videos=["test_video.mp4"],
)
self.assertGreater(len(outputs["input_ids"]), 0)
self.mock_image_preprocessor.preprocess.side_effect = None
def test_request2ids_comprehensive(self):
"""Test request2ids with various scenarios"""
self.processor.is_training = False
# Basic request with multimodal content - covers both text and image branches in one call
mock_image = Image.new("RGB", (224, 224))
request = {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image", "data": mock_image, "uuid": "img1"},
],
}
],
"add_generation_prompt": True,
}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = request["messages"]
outputs = self.processor.request2ids(request)
self.assertIn("input_ids", outputs)
# Error case: missing chat_template
self.processor.tokenizer.chat_template = None
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = [{"role": "user", "content": [{"type": "text", "text": "Hello"}]}]
with self.assertRaises(ValueError):
self.processor.request2ids(request)
self.processor.tokenizer.chat_template = MagicMock()
# Error case: unsupported role
request = {
"messages": [{"role": "invalid_role", "content": "Hello"}],
"add_generation_prompt": True,
}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = [{"role": "invalid_role", "content": [{"type": "text", "text": "Hello"}]}]
with self.assertRaises(AssertionError):
self.processor.request2ids(request)
# Error case: missing cache when cache is disabled
self.processor.enable_processor_cache = False
request = {"messages": [{"role": "user", "content": [{"type": "image", "uuid": "img1"}]}]}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = request["messages"]
with self.assertRaises(ValueError):
self.processor.request2ids(request)
def test_extract_labels(self):
"""Test label extraction"""
outputs = {"input_ids": [1, 2, 3, self.processor.sep_token_id, 4, 5], "labels": []}
self.processor.is_training = True
self.processor._extract_labels(outputs, ["target text"])
self.assertEqual(len(outputs["labels"]), len(outputs["input_ids"]))
# Multiple targets
outputs2 = {
"input_ids": [1, 2, 3, self.processor.sep_token_id, 4, 5, self.processor.sep_token_id, 6, 7],
"labels": [],
}
self.processor._extract_labels(outputs2, ["target1", "target2"])
self.assertEqual(len(outputs2["labels"]), len(outputs2["input_ids"]))
# Error case
outputs3 = {"input_ids": [1, 2, 3, self.processor.sep_token_id], "labels": []}
with self.assertRaises(AssertionError):
self.processor._extract_labels(outputs3, ["target1", "target2"])
def test_fancy_print(self):
"""Test fancy_print function"""
from fastdeploy.input.ernie4_5_vl_processor.process import fancy_print
test_cases = [
([1, 2, 3, self.processor.image_patch_id, 4, 5], self.processor.image_patch_id, None),
(
[
1,
2,
self.processor.image_patch_id,
self.processor.image_patch_id,
self.processor.image_patch_id,
4,
5,
],
self.processor.image_patch_id,
"<|IMAGE@",
),
([1, 2, 3, 4, 5], self.processor.image_patch_id, None),
]
for input_ids, image_patch_id, expected_contains in test_cases:
result = fancy_print(input_ids, self.mock_tokenizer, image_patch_id)
self.assertIsInstance(result, str)
if expected_contains:
self.assertIn(expected_contains, result)
def test_processor_cache_operations(self):
"""Test processor cache get/update and request2ids with cache"""
# Test get_processor_cache
mock_socket = MagicMock()
mock_socket.recv_multipart = MagicMock(return_value=(b"", b"pickled_data"))
with patch("fastdeploy.input.ernie4_5_vl_processor.process.pickle") as mock_pickle:
mock_pickle.loads = MagicMock(return_value=[{"data": "cached_item"}])
result = self.processor.get_processor_cache(mock_socket, ["hash1", "hash2"])
self.assertEqual(len(result), 1)
# Test update_processor_cache
mock_socket2 = MagicMock()
with patch("fastdeploy.input.ernie4_5_vl_processor.process.pickle"):
self.processor.update_processor_cache(
mock_socket2,
["hash1"],
[(np.array([1, 2, 3]), {"meta": "data"})],
)
mock_socket2.send_multipart.assert_called_once()
# Test request2ids with processor cache update
self.processor.is_training = False
self.processor.enable_processor_cache = True
mock_image = Image.new("RGB", (224, 224))
request = {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Hello"},
{"type": "image", "data": mock_image, "uuid": "img1"},
],
}
],
"add_generation_prompt": True,
}
with patch("fastdeploy.input.ernie4_5_vl_processor.process.zmq") as mock_zmq:
mock_context = MagicMock()
mock_socket = MagicMock()
mock_socket.recv_multipart = MagicMock(return_value=(b"", b"pickled_data"))
mock_context.socket.return_value = mock_socket
mock_zmq.Context.return_value = mock_context
with patch("fastdeploy.input.ernie4_5_vl_processor.process.parse_chat_messages") as mock_parse:
mock_parse.return_value = request["messages"]
with patch("fastdeploy.input.ernie4_5_vl_processor.process.pickle") as mock_pickle:
mock_pickle.loads = MagicMock(return_value=[])
with patch.object(self.processor, "text2ids") as mock_text2ids:
mock_text2ids.return_value = {
"input_ids": [1, 2, 3],
"token_type_ids": [0] * 3,
"position_ids": [[i] * 3 for i in range(3)],
"images": [np.random.rand(256, 3 * 14 * 14).astype(np.float32)],
"grid_thw": [np.array([[1, 16, 16]])],
"image_type_ids": [0],
"cur_position": 3,
"video_cnt": 0,
"num_input_image_tokens": 0,
"num_input_video_tokens": 0,
"mm_positions": [],
"mm_hashes": ["hash1"],
}
with patch.object(self.processor, "update_processor_cache") as mock_update:
self.processor.request2ids(request)
mock_update.assert_called_once()
self.processor.enable_processor_cache = False
if __name__ == "__main__":
unittest.main()