add accuracy check ci (#3389)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* add accuracy ci

* fix

* fix

* update

* rename ci jobs
This commit is contained in:
YUNSHEN XIE
2025-08-15 15:17:43 +08:00
committed by GitHub
parent 4bd6a9fa7d
commit cc8ee50f27
5 changed files with 188 additions and 190 deletions

174
.github/workflows/_accuracy_test.yml vendored Normal file
View File

@@ -0,0 +1,174 @@
name: Accuracy Test
description: "Run Accuracy Tests"
on:
workflow_call:
inputs:
DOCKER_IMAGE:
description: "Build Images"
required: true
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310"
FASTDEPLOY_ARCHIVE_URL:
description: "URL of the compressed FastDeploy code archive."
required: true
type: string
FASTDEPLOY_WHEEL_URL:
description: "URL of the FastDeploy Wheel."
required: true
type: string
CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
MODEL_CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
jobs:
accuracy_tests:
runs-on: [self-hosted, GPU-h20-1Cards]
steps:
- name: Code Prepare
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
run: |
set -x
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
- name: Run FastDeploy Base Tests
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fastdeploy_wheel_url: ${{ inputs.FASTDEPLOY_WHEEL_URL }}
CACHE_DIR: ${{ inputs.CACHE_DIR }}
MODEL_CACHE_DIR: ${{ inputs.MODEL_CACHE_DIR }}
run: |
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
DEVICES=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
DEVICE_PORT=$(echo "$DEVICES" | cut -d',' -f1)
FLASK_PORT=$((42068 + DEVICE_PORT * 100))
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
CACHE_DIR="${CACHE_DIR:-$(dirname "$(dirname "${{ github.workspace }}")")}"
echo "CACHE_DIR is set to ${CACHE_DIR}"
if [ ! -f "${CACHE_DIR}/gitconfig" ]; then
touch "${CACHE_DIR}/gitconfig"
fi
if [ ! -d "${MODEL_CACHE_DIR}" ]; then
echo "Error: MODEL_CACHE_DIR '${MODEL_CACHE_DIR}' does not exist."
exit 1
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
echo "==== PORT CLEAN BEFORE TASK RUN ====" | tee -a $LOG_FILE
for port in "${PORTS[@]}"; do
PIDS=$(lsof -t -i :$port || true)
if [ -n "$PIDS" ]; then
echo "Port $port is occupied by PID(s): $PIDS" | tee -a $LOG_FILE
echo "$PIDS" | xargs -r kill -9
echo "Port $port cleared" | tee -a $LOG_FILE
else
echo "Port $port is free" | tee -a $LOG_FILE
fi
done
echo "==== PORT CLEAN COMPLETE ====" | tee -a $LOG_FILE
docker run --rm --ipc=host --pid=host --net=host \
-v $(pwd):/workspace \
-w /workspace \
-e fastdeploy_wheel_url=${fastdeploy_wheel_url} \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-v "${MODEL_CACHE_DIR}:/MODELDATA" \
-v "${CACHE_DIR}/gitconfig:/etc/gitconfig:ro" \
-v "${CACHE_DIR}/.cache:/root/.cache" \
-v "${CACHE_DIR}/ConfigDir:/root/.config" \
-e TZ="Asia/Shanghai" \
--gpus '"device='"${DEVICES}"'"' ${docker_image} /bin/bash -xc '
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install ${fastdeploy_wheel_url}
python -m pip install pytest
wget https://paddle-qa.bj.bcebos.com/zhengtianyu/tools/llm-deploy-linux-amd64
chmod +x ./llm-deploy-linux-amd64
./llm-deploy-linux-amd64 -python python3.10 \
-model_name ERNIE-4.5-0.3B-Paddle \
-model_path /MODELDATA \
--skip install
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
pushd test/ce/deploy
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\"}"
curl -X POST http://localhost:${FLASK_PORT}/wait_for_infer?timeout=90
popd
pushd test/ce/accuracy_cases
export URL=http://localhost:${FD_API_PORT}/v1/chat/completions
export TEMPLATE=TOKEN_LOGPROB
export MODEL_SIZE=0.3B
TEST_EXIT_CODE=0
python gsm8k.py || TEST_EXIT_CODE=1
popd
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> /workspace/FastDeploy/exit_code.env
'
if [ -f ./FastDeploy/exit_code.env ]; then
source ./FastDeploy/exit_code.env
cat ./FastDeploy/exit_code.env >> $GITHUB_ENV
fi
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}"
exit ${TEST_EXIT_CODE}

View File

@@ -73,3 +73,13 @@ jobs:
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
accuracy_test:
name: Run Accuracy Tests
needs: [clone,build]
uses: ./.github/workflows/_accuracy_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"

View File

@@ -18,11 +18,13 @@ BASELINE = {
"21B": 0.49,
"300B": 0.96,
}
baseline = BASELINE.get(os.environ.get("MODEL"), None)
baseline = BASELINE.get(os.environ.get("MODEL_SIZE"), None)
base_url = os.environ.get("URL", None)
atol = 0.03
if baseline is None:
raise ValueError(f"Invalid MODEL value '{os.environ.get('MODEL')}', expected one of {list(BASELINE.keys())}")
raise ValueError(
f"Invalid MODEL_SIZE value '{os.environ.get('MODEL_SIZE')}', expected one of {list(BASELINE.keys())}"
)
if base_url is None:
raise ValueError(
"Environment variable 'URL' is not set. "

Binary file not shown.

View File

@@ -1,188 +0,0 @@
#!/bin/env python3
# -*- coding: utf-8 -*-
# @author DDDivano
# encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python
import os
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
from urllib.parse import urlparse, urlunparse
import openai
from datasets import load_dataset
from tqdm import tqdm
BASELINE = {
"0.3B": 0.05,
"21B": 0.49,
"300B": 0.96,
}
baseline = BASELINE.get(os.environ.get("MODEL"), None)
base_url = os.environ.get("URL", None)
atol = 0.03
if baseline is None:
raise ValueError(f"Invalid MODEL value '{os.environ.get('MODEL')}', expected one of {list(BASELINE.keys())}")
if base_url is None:
raise ValueError(
"Environment variable 'URL' is not set. "
"Please specify the inference service address, e.g., 'http://localhost:8191/v1'."
)
def strip_path_suffix(url: str, suffix: str = "chat/completions") -> str:
"""
去除 URL 中的指定路径后缀(如 chat/completions
"""
parsed = urlparse(url)
# 移除末尾的 suffix注意确保只移除结尾部分
if parsed.path.endswith("/" + suffix):
new_path = parsed.path[: -(len(suffix) + 1)] # +1 是斜杠
else:
new_path = parsed.path
# 重新构造 URL
cleaned_url = urlunparse(
(
parsed.scheme,
parsed.netloc,
new_path.rstrip("/"), # 去掉末尾的斜杠
"",
"",
"", # 忽略 params/query/fragment
)
)
return cleaned_url
# ========== OpenAI 客户端配置 ==========
client = openai.OpenAI(
api_key="DDDivano",
# base_url="http://占位:8187/v1"
base_url=strip_path_suffix(base_url),
)
model_name = "eb"
max_samples = 690
max_tokens = 12288
max_workers = 33
# ========== 加载数据集 ==========
dataset = load_dataset("parquet", data_files="gsm8k.parquet", split="train")
dataset = dataset.select(range(min(len(dataset), max_samples)))
# ========== 提取 GT 中 "#### 数字" 格式的最终答案 ==========
def extract_gt_answer(text):
match = re.search(r"####\s*([\d,]+(?:\.\d+)?)", text)
if match:
return match.group(1).replace(",", "").strip()
return None
# ========== 提取模型输出中的“最后一句话”中的数字 ==========
def extract_model_answer(text):
if not text:
return None
text = text.replace(",", "").replace("$", "")
lines = text.strip().splitlines()
last_line = lines[-1] if lines else text
match = re.search(r"-?\d+(?:\.\d+)?", last_line)
return match.group(0) if match else None
# ========== 数值比较函数 ==========
def is_answer_equal(pred, gt, tol=1e-6):
if pred is None or gt is None:
return False
try:
return abs(float(pred) - float(gt)) < tol
except:
return pred == gt
# ========== 构造 Prompt ==========
def build_prompt(sample):
return f"以下是一个数学问题,请直接给出最终答案。一定要把最终答案数字在最后输出。\n\n问题:{sample['question']}\n\n答案:"
# ========== 模型请求函数 ==========
def query_model(prompt):
try:
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": "你是一个数学专家,擅长严谨地解答数学问题。"},
{"role": "user", "content": prompt},
],
temperature=1.0,
top_p=0.8,
max_tokens=max_tokens,
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"[Error] {e}"
# ========== 评估函数 ==========
def evaluate_sample(sample):
prompt = build_prompt(sample)
model_output = query_model(prompt)
gt_value = extract_gt_answer(sample["answer"])
pred_value = extract_model_answer(model_output)
is_correct = is_answer_equal(pred_value, gt_value)
result = {
"question": sample["question"],
"gt_answer": gt_value,
"model_answer": pred_value,
"raw_gt_answer": sample["answer"],
"raw_model_output": model_output,
"is_correct": is_correct,
}
return result
# ========== 主流程 ==========
acc = []
times = 3
for i in range(times):
correct = 0
total = 0
results = []
print(f"🚀 Starting evaluation with {max_workers} threads...")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(evaluate_sample, sample) for sample in dataset]
for future in tqdm(as_completed(futures), total=len(futures), desc="Evaluating"):
result = future.result()
results.append(result)
total += 1
if result["is_correct"]:
correct += 1
else:
print("\n❌ Wrong prediction:")
print(f"Q: {result['question']}")
print(f"GT: {result['gt_answer']}")
print(f"Model: {result['model_answer']}")
print(f"Full GT: {result['raw_gt_answer']}")
print(f"Model Output: {result['raw_model_output']}")
# ========== 输出准确率 ==========
accuracy = correct / total * 100 if total > 0 else 0.0
print(f"\n🎯 Evaluation Complete: Accuracy = {accuracy:.2f}% ({correct}/{total})")
acc.append(accuracy)
avg_acc = round(sum(acc) / times / 100, 4) # 优化百分数
print(f"平均准确率:{avg_acc * 100:.2f}%")
assert (
abs(avg_acc - baseline) <= atol
), f"模型准确率 {avg_acc:.2f} 与基准 {baseline:.2f} 相差 {abs(avg_acc - baseline):.2f},超出容忍范围 {atol:.2f}"
# with open("eval_result_math.json", "w", encoding="utf-8") as f:
# json.dump(results, f, indent=2, ensure_ascii=False)