[Optimization] Refine row parallel bias and nranks and moe all_reduce (#5247)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FD Image Build (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled

* rename nranks to tp_size and fix bias in v1 loader

* fix

* update
This commit is contained in:
Yuanle Liu
2025-11-26 21:09:09 +08:00
committed by GitHub
parent bf30f45738
commit cb56d46694
20 changed files with 52 additions and 112 deletions

View File

@@ -17,7 +17,6 @@
import paddle
from paddle import nn
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
from fastdeploy.utils import ceil_div
@@ -241,7 +240,4 @@ class DCUTritonWeightOnlyMoEMethod(QuantMethodBase):
intermediate_cache3.reshape_([token_num, top_k, hidden_size])
out = intermediate_cache3.sum(axis=1)
if layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out)
return out

View File

@@ -175,13 +175,6 @@ class GCUFusedMoeMethod(UnquantizedFusedMoEMethod):
fused_moe_out = intermediate_cache3.sum(axis=1)
fused_moe_out = fused_moe_out.reshape_([token_num, hidden_size])
if layer.tp_size > 1:
from fastdeploy.distributed.communication import (
tensor_model_parallel_all_reduce,
)
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out)
return fused_moe_out
def apply(

View File

@@ -211,7 +211,7 @@ class HPUAttentionBackend(AttentionBackend_HPU):
self.speculate_max_draft_token_num: int = llm_config.speculative_config.num_speculative_tokens
self.keep_pd_step_flag: bool = llm_config.speculative_config.model_type == "mtp"
self.rank: int = llm_config.parallel_config.tensor_parallel_rank
self.nranks = llm_config.parallel_config.tensor_parallel_size
self.tp_size = llm_config.parallel_config.tensor_parallel_size
self.kv_num_heads = kv_num_heads
self.num_heads = num_heads
@@ -325,7 +325,7 @@ class HPUAttentionBackend(AttentionBackend_HPU):
softmax_mode=0,
)
if self.nranks > 1:
if self.tp_size > 1:
from fastdeploy.distributed.communication import (
tensor_model_parallel_all_reduce_custom,
)
@@ -368,7 +368,7 @@ class HPUAttentionBackend(AttentionBackend_HPU):
)
# all_reduce
if self.nranks > 1:
if self.tp_size > 1:
from fastdeploy.distributed.communication import (
tensor_model_parallel_all_reduce_custom,
)

View File

@@ -20,7 +20,6 @@ import paddle
from paddle import nn
from paddle.nn.quant import weight_quantize
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.moe.fused_moe_backend_base import (
MoEMethodBase,
UnquantizedFusedMoEMethod,
@@ -171,9 +170,6 @@ class MetaxCutlassUnquantizedFusedMoEMethod(UnquantizedFusedMoEMethod):
False,
)
if layer.reduce_results and layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out, layer.fd_config.parallel_config.tp_group)
return fused_moe_out
@@ -301,9 +297,6 @@ class MetaxCutlassMoEMethod(MoEMethodBase):
False,
)
if layer.reduce_results and layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out, layer.fd_config.parallel_config.tp_group)
return fused_moe_out

View File

@@ -18,7 +18,6 @@ import paddle
from paddle import nn
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
from fastdeploy.model_executor.ops.gpu import tritonmoe_preprocess
@@ -393,6 +392,4 @@ class MetaxTritonWeightOnlyMoEMethod(QuantMethodBase):
down_proj_out.reshape_([token_num, top_k, hidden_size])
out = down_proj_out.sum(axis=1)
if layer.reduce_results and layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out, layer.fd_config.parallel_config.tp_group)
return out

View File

@@ -17,7 +17,6 @@
import paddle
from paddle import nn
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.moe.fused_moe_backend_base import MoEMethodBase
from fastdeploy.model_executor.layers.quantization.weight_only import WeightOnlyConfig
from fastdeploy.model_executor.layers.utils import get_tensor
@@ -255,8 +254,6 @@ class XPUMoEMethod(MoEMethodBase):
layer.top_k,
False, # moe group, used in deepseek
)
if layer.reduce_results and layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out)
return fused_moe_out
@@ -314,8 +311,6 @@ class XPUMoEMethod(MoEMethodBase):
permute_indices_per_token.shape[1],
)
if layer.reduce_results and layer.tp_size > 1:
tmp_ffn_out = tensor_model_parallel_all_reduce(tmp_ffn_out)
return tmp_ffn_out
def apply_tp(

View File

@@ -79,7 +79,6 @@ class UnquantizedLinearMethod(QuantMethodBase):
layer.weight.set_value(weights)
def apply(self, layer: nn.Layer, x: paddle.Tensor) -> paddle.Tensor:
linear_out = paddle.matmul(x, layer.weight)
if layer.with_bias:
linear_out = paddle.add(linear_out, layer.bias)
@@ -423,9 +422,9 @@ class ColumnParallelLinear(LinearBase):
skip_quant (bool): Whether to skip quantization. Defaults to False.
"""
self.fd_config = fd_config
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.input_size = input_size
self.output_size = divide(output_size, self.nranks) # Split the output_size using TP inference.
self.output_size = divide(output_size, self.tp_size) # Split the output_size using TP inference.
self.hidden_size = fd_config.model_config.hidden_size
super().__init__(
@@ -449,7 +448,7 @@ class ColumnParallelLinear(LinearBase):
model_format=fd_config.model_config.model_format,
)
if self.nranks > 0:
if self.tp_size > 0:
if self.with_bias:
# col parallel
_set_var_distributed(self.bias, split_axis=1)
@@ -492,7 +491,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
"""
self.activation = activation
self.hidden_size = fd_config.model_config.hidden_size
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.output_size = output_size
self.local_rank = fd_config.parallel_config.tensor_parallel_rank
@@ -522,8 +521,8 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
# Loaded weight is already fused on disk.
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("gate", 0, output_size * self.nranks // 2),
("up", output_size * self.nranks // 2, output_size * self.nranks // 2),
("gate", 0, output_size * self.tp_size // 2),
("up", output_size * self.tp_size // 2, output_size * self.tp_size // 2),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = slice_fn(
@@ -537,13 +536,13 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
loaded_weight = get_tensor(loaded_weight)
loaded_weight = loaded_weight.transpose([1, 0])
# Tensor parallelism splits the weight along the output_dim
if self.nranks > 1 and output_dim is not None:
if self.tp_size > 1 and output_dim is not None:
dim = -1 if output_dim else 0
if isinstance(loaded_weight, (np.ndarray, paddle.Tensor)):
size = loaded_weight.shape[dim]
else:
size = loaded_weight.get_shape()[dim]
block_size = size // self.nranks
block_size = size // self.tp_size
shard_offset = self.local_rank * block_size
shard_size = (self.local_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, start=shard_offset, end=shard_size)
@@ -635,15 +634,15 @@ class QKVParallelLinear(ColumnParallelLinear):
self.kv_num_heads = fd_config.model_config.num_key_value_heads if kv_num_heads is None else kv_num_heads
self.hidden_size = fd_config.model_config.hidden_size if hidden_size is None else hidden_size
self.head_dim = fd_config.model_config.head_dim if head_dim is None else head_dim
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.local_rank = fd_config.parallel_config.tensor_parallel_rank
self.num_heads_per_rank = divide(self.num_heads, self.nranks)
if self.kv_num_heads < self.nranks and self.nranks % self.kv_num_heads == 0:
self.num_heads_per_rank = divide(self.num_heads, self.tp_size)
if self.kv_num_heads < self.tp_size and self.tp_size % self.kv_num_heads == 0:
self.kv_num_heads_per_rank = 1
self.num_kv_head_replicas = divide(self.nranks, self.kv_num_heads)
output_size = (self.num_heads + 2 * self.nranks) * self.head_dim
self.num_kv_head_replicas = divide(self.tp_size, self.kv_num_heads)
output_size = (self.num_heads + 2 * self.tp_size) * self.head_dim
else:
self.kv_num_heads_per_rank = divide(self.kv_num_heads, self.nranks)
self.kv_num_heads_per_rank = divide(self.kv_num_heads, self.tp_size)
self.num_kv_head_replicas = 1
output_size = (self.num_heads + 2 * self.kv_num_heads) * self.head_dim
input_size = self.hidden_size
@@ -697,7 +696,7 @@ class QKVParallelLinear(ColumnParallelLinear):
loaded_weight = get_tensor(loaded_weight)
loaded_weight = loaded_weight.transpose([1, 0])
# Tensor parallelism splits the weight along the output_dim
if self.nranks > 1 and output_dim is not None:
if self.tp_size > 1 and output_dim is not None:
block_size = self._get_shard_size_mapping(loaded_shard_id, head_dim)
shard_id = self.local_rank if loaded_shard_id == "q" else self.local_rank // self.num_kv_head_replicas
shard_offset = shard_id * block_size
@@ -750,10 +749,10 @@ class QKVParallelLinear(ColumnParallelLinear):
k_tensor = get_tensor(state_dict.pop(k_weight_key))
v_tensor = get_tensor(state_dict.pop(v_weight_key))
if self.kv_num_heads < self.nranks:
if self.kv_num_heads < self.tp_size:
sharedkv_index = (
self.fd_config.parallel_config.tensor_parallel_rank * self.kv_num_heads
) // self.nranks
) // self.tp_size
sharedkv_start = sharedkv_index * self.head_dim
sharedkv_end = sharedkv_start + self.head_dim
k_tensor = k_tensor[:, sharedkv_start:sharedkv_end]
@@ -767,10 +766,7 @@ class QKVParallelLinear(ColumnParallelLinear):
)
weight_tensor = paddle.transpose(weight_tensor, perm=[1, 0])
if self.fd_config.quant_config:
self.quant_method.process_loaded_weights(self, weight_tensor)
else:
self.weight.set_value(weight_tensor)
self.quant_method.process_loaded_weights(self, weight_tensor)
def load_state_dict(self, state_dict: dict):
"""
@@ -846,10 +842,8 @@ class RowParallelLinear(LinearBase):
skip_quant (bool): Whether to skip quantization. Defaults to False.
"""
self.fd_config = fd_config
self.skip_quant = False
self.ep_size = fd_config.parallel_config.expert_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_group = fd_config.parallel_config.tp_group
self.hidden_size = fd_config.model_config.hidden_size
self.head_dim = fd_config.model_config.head_dim
@@ -863,7 +857,7 @@ class RowParallelLinear(LinearBase):
if self.split_token:
self.input_size = input_size
else:
self.input_size = divide(input_size, self.nranks)
self.input_size = divide(input_size, self.tp_size)
self.output_size = output_size
super().__init__(
@@ -876,8 +870,7 @@ class RowParallelLinear(LinearBase):
skip_quant=skip_quant,
weight_dtype=weight_dtype,
)
if add_bias:
assert with_bias, "with_bias must be True when add_bias is True."
assert self.quant_method is not None
create_weight_kwargs = dict(
layer=self,
@@ -887,12 +880,17 @@ class RowParallelLinear(LinearBase):
),
model_format=fd_config.model_config.model_format,
)
if self.nranks > 0:
if self.tp_size > 1:
create_weight_kwargs["split_axis"] = 0
create_weight_kwargs["is_distributed"] = True
self.quant_method.create_weights(**create_weight_kwargs)
self.reduce_results = reduce_results
self.reduce_results = reduce_results and not self.split_token
if add_bias:
assert with_bias, "with_bias must be True when add_bias is True."
if self.tp_size > 1 and self.reduce_results:
set_weight_attrs(self.bias, {"tp_row_bias": True})
def all2all_transpose(self, x: paddle.Tensor) -> paddle.Tensor:
token_num = x.shape[0]
@@ -912,15 +910,11 @@ class RowParallelLinear(LinearBase):
if self.split_token:
x = self.all2all_transpose(x)
if self.fd_config.quant_config:
out = self.quant_method.apply(self, x)
else:
out = paddle.matmul(x, self.weight)
out = self.quant_method.apply(self, x)
if self.reduce_results and self.nranks > 1 and not self.split_token:
if self.reduce_results and self.tp_size > 1:
out = tensor_model_parallel_all_reduce(out, self.tp_group)
if not self.fd_config.quant_config and self.add_bias:
out = paddle.add(out, self.bias)
return out
@@ -950,16 +944,15 @@ class KVBatchLinear(nn.Layer):
qk_nope_head_dim (int): Dimension for Q/K projection (nope part). Defaults to None.
v_head_dim (int): Dimension for V projection. Defaults to None.
with_bias (bool): Whether to include bias or not. Defaults to False.
skip_quant (bool): Whether to skip quantization. Defaults to False.
"""
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.kv_lora_rank = kv_lora_rank
self.num_attention_heads = num_attention_heads
self.qk_nope_head_dim = qk_nope_head_dim
self.v_head_dim = v_head_dim
# Split num_attention_heads when using TP inference.
self.num_heads_per_partition = divide(num_attention_heads, self.nranks)
self.num_heads_per_partition = divide(num_attention_heads, self.tp_size)
self.local_rank = fd_config.parallel_config.tensor_parallel_rank
self.fd_config = fd_config
self.kv_b_proj = kv_b_proj

View File

@@ -68,11 +68,11 @@ class ParallelLMHead(nn.Layer):
self.embedding_dim = embedding_dim
self.tp_group = fd_config.parallel_config.tp_group
self.column_cut = True
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.fd_config = fd_config
self.padding_size = padding_size
if num_embeddings % self.nranks != 0:
if num_embeddings % self.tp_size != 0:
num_embeddings = pad_vocab_size(num_embeddings, self.padding_size)
self.num_embeddings = num_embeddings

View File

@@ -20,7 +20,6 @@ from paddle.nn.quant import weight_quantize
from paddleformers.utils.log import logger
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.platforms import current_platform
from ..utils import get_tensor
@@ -390,9 +389,6 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
routed_scaling_factor=1.0,
)
if layer.reduce_results and layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out, layer.fd_config.parallel_config.tp_group)
return fused_moe_out

View File

@@ -19,7 +19,6 @@ from paddle import nn
from paddleformers.utils.log import logger
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.ops.gpu import count_tokens_per_expert_func, deep_gemm
@@ -423,7 +422,5 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
False, # norm_topk_prob
1.0,
)[0]
if layer.tp_size > 1:
tmp_ffn_out = tensor_model_parallel_all_reduce(tmp_ffn_out)
return tmp_ffn_out

View File

@@ -18,7 +18,6 @@ import paddle
from paddle import nn
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.ops.gpu import (
MoeWna16MarlinGemmApi,
tritonmoe_preprocess_func,
@@ -351,7 +350,4 @@ class MarlinWeightOnlyMoEMethod(QuantMethodBase):
ffn_out.reshape_([token_num, -1, hidden_size])
ffn_out = ffn_out.sum(axis=1)
if layer.reduce_results and layer.tp_size > 1:
ffn_out = tensor_model_parallel_all_reduce(ffn_out)
return ffn_out

View File

@@ -18,7 +18,6 @@ import paddle
from paddle import nn
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.utils import (
TensorTracker,
@@ -433,8 +432,6 @@ class TritonWeightOnlyMoEMethod(QuantMethodBase):
down_proj_out.reshape_([token_num, top_k, hidden_size])
out = down_proj_out.sum(axis=1)
if layer.reduce_results and layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out)
return out
@@ -838,9 +835,6 @@ class Wfp8Afp8MoEMethod(QuantMethodBase):
down_proj_out.reshape_([token_num, top_k, hidden_size])
out = down_proj_out.sum(axis=1)
if layer.reduce_results and layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out)
return out
@@ -1129,9 +1123,6 @@ class TensorWiseFP8MoEMethod(QuantMethodBase):
down_proj_out.reshape_([token_num, top_k, hidden_size])
out = down_proj_out.sum(axis=1)
if layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out)
return out
@@ -1625,7 +1616,4 @@ class BlockWiseFP8MoEMethod(QuantMethodBase):
intermediate_cache3.reshape_([token_num, top_k, hidden_size])
out = intermediate_cache3.sum(axis=1)
if layer.tp_size > 1:
out = tensor_model_parallel_all_reduce(out)
return out

View File

@@ -18,7 +18,6 @@ import paddle
from paddle import nn
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.ops.gpu import moe_expert_dispatch, moe_expert_reduce
from fastdeploy.utils import ceil_div
@@ -316,9 +315,6 @@ class CutlassWint2FusedMoeMethod(Wint2MoeMethod):
routed_scaling_factor=1.0,
)
if layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out)
return fused_moe_out
@@ -486,7 +482,4 @@ class TritonWint2FusedMoeMethod(CutlassWint2FusedMoeMethod):
fused_moe_out = paddle.sum(intermediate_cache3, axis=1)
if layer.tp_size > 1:
fused_moe_out = tensor_model_parallel_all_reduce(fused_moe_out)
return fused_moe_out

View File

@@ -21,6 +21,7 @@ from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy import envs
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.utils import h2d_copy, slice_fn
from fastdeploy.platforms import current_platform
@@ -634,4 +635,7 @@ class FusedMoE(nn.Layer):
out = self.forward_split_allgather(x, gate)
else:
out = self.quant_method.apply(self, x, gate)
if self.reduce_results and self.tp_size > 1:
out = tensor_model_parallel_all_reduce(out, self.tp_group)
return out

View File

@@ -56,7 +56,7 @@ class ParallelEHProjection(nn.Layer):
self.fd_config = fd_config
self.tp_group = fd_config.parallel_config.tp_group
self.column_cut = True
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.tp_size = fd_config.parallel_config.tensor_parallel_size
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
@@ -84,7 +84,7 @@ class ParallelEHProjection(nn.Layer):
self.linear.bias,
{"rl_need_attr": {"rl_tp_degree": fd_config.parallel_config.tensor_parallel_size}},
)
if self.nranks > 1:
if self.tp_size > 1:
set_weight_attrs(self.linear.weight, {"output_dim": True})
else:
self.linear = RowParallelLinear(
@@ -103,7 +103,7 @@ class ParallelEHProjection(nn.Layer):
"weight_need_transpose": self.fd_config.model_config.model_format == "torch",
},
)
if self.nranks > 1:
if self.tp_size > 1:
set_weight_attrs(self.linear.weight, {"output_dim": True})
set_weight_attrs(
self.linear.weight, {"rl_need_attr": {"rl_tp_degree": fd_config.parallel_config.tensor_parallel_size}}

View File

@@ -66,7 +66,6 @@ class Ernie4_5_MLP(nn.Layer):
reduce_results: bool = True,
) -> None:
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.up_gate_proj = MergedColumnParallelLinear(
fd_config=fd_config,
prefix=f"{prefix}.up_gate_proj",

View File

@@ -61,7 +61,6 @@ class Qwen2MLP(nn.Layer):
prefix: str = "",
) -> None:
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.up_gate_proj = MergedColumnParallelLinear(
fd_config=fd_config,
prefix=f"{prefix}.up_gate_proj",

View File

@@ -59,7 +59,6 @@ class Qwen3Attention(nn.Layer):
self.head_dim = fd_config.model_config.head_dim
self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False)
nranks = fd_config.parallel_config.tensor_parallel_size
self.o_proj = RowParallelLinear(
fd_config,
@@ -91,10 +90,10 @@ class Qwen3Attention(nn.Layer):
begin_norm_axis=2,
)
nranks = fd_config.parallel_config.tensor_parallel_size
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
tp_size = fd_config.parallel_config.tensor_parallel_size
num_kv_heads_replicas = max(1, tp_size // fd_config.model_config.num_key_value_heads)
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // tp_size
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // tp_size
def load_state_dict(self, state_dict):
""" """

View File

@@ -97,8 +97,6 @@ class Qwen3MLP(nn.Layer):
prefix: str = "",
) -> None:
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.up_gate_proj = MergedColumnParallelLinear(
fd_config,
prefix=f"{prefix}.up_gate_proj",

View File

@@ -298,6 +298,10 @@ def default_weight_loader(fd_config: FDConfig = None) -> None:
shard_size = (fd_config.parallel_config.tensor_parallel_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, shard_offset, shard_size)
tp_row_bias = getattr(param, "tp_row_bias", None)
if tp_row_bias:
loaded_weight = loaded_weight / fd_config.parallel_config.tensor_parallel_size
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
loaded_weight = fd_cast(loaded_weight, param)
if param.shape != loaded_weight.shape: